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Antiferromagnetic Potts Models on the Square Lattice:
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We study the antiferromagnetic q-state Potts model on the square lattice for
q=3 and q=4, using the Wang�Swendsen�Kotecky� (WSK) Monte Carlo algo-
rithm and a powerful finite-size-scaling extrapolation method. For q=3 we
obtain good control up to correlation length !t5000; the data are consistent
with !(;)=Ae2;; p(1+a1e&;+ } } } ) as ; � �, with pr1. The staggered
susceptibility behaves as /staggt!5�3. For q=4 the model is disordered (!�2)
even at zero temperature. In appendices we prove a correlation inequality for
Potts antiferromagnets on a bipartite lattice, and we prove ergodicity of the
WSK algorithm at zero temperature for Potts antiferromagnets on a bipartite
lattice.

KEY WORDS: Potts model; antiferromagnet; square lattice; phase transition,
zero-temperature critical point; Monte Carlo; cluster algorithm; Swendsen�
Wang algorithm, Wang�Swendsen�Kotecky� algorithm; finite-size scaling.

1. INTRODUCTION

The Potts model(1�3) plays an important role in the general theory of criti-
cal phenomena, especially in two dimensions, (4�6) and has applications to
various condensed-matter systems.(2) Ferromagnetic Potts models have
been extensively studied over the last two decades, and much is known
about their phase diagrams(2, 3) and critical exponents.(5�7) But for anti-
ferromagnetic Potts models, many basic questions remain open: Is there a
phase transition at finite temperature, and if so, of what order? What is the
nature of the low-temperature phase(s)? If there is a critical point, what are
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the critical exponents and the universality classes? Can these exponents be
understood (for two-dimensional models) in terms of conformal field
theory?

One thing is known rigorously:(8, 9) for q large enough (how large
depends on the lattice in question), the antiferromagnetic q-state Potts
model has a unique infinite-volume Gibbs measure and exponential decay
of correlations at all temperatures, including zero temperature: the system is
disordered as a result of the large ground-state entropy. However, for
smaller values of q, phase transitions can and do occur. Moreover, for these
antiferromagnetic models the nature of the phase transition is highly lat-
tice-dependent, in sharp contrast to the universality typically enjoyed by
ferromagnets. Thus, one expects that for each lattice L there will be a
value qc(L) such that

(a) For q>qc(L) the model has exponential decay of correlations
uniformly at all temperatures, including zero temperature.

(b) For q=qc(L) the model has a critical point at zero temperature.

(c) For q<qc(L) any behavior is possible. Often (though not
always) the model has a phase transition at nonzero temperature, which
may be of either first or second order.

The problem, for each lattice, is to find qc(L) and to determine the precise
behavior for each q�qc(L).

In this paper we report the results of a large-scale Monte Carlo study
of the 3-state and 4-state antiferromagnetic Potts models on the (two-dimen-
sional) square lattice, using the Wang�Swendsen�Kotecky� (WSK)(10�12)

cluster algorithm.3 We use a powerful finite-size-scaling (FSS) extrapola-
tion method(14�22) to estimate the infinite-volume correlation length ! and
staggered susceptibility /stagg . Using lattices up to 1536_1536, we can
attain an accuracy of a few percent on ! and /stagg at correlation lengths
! as large as 5000. This allows us to conjecture the exact form of the critical
behavior for the 3-state model.

The q-state Potts model is defined by the reduced Hamiltonian

H=&J :
(xy)

$_x , _y
(1.1)

where the sum runs over all nearest-neighbor pairs of lattice sites, and each
spin takes values _x # [1, 2,..., q]. The antiferromagnetic case corresponds
to J=&;<0. Henceforth we restrict attention to the model (1.1) on the
square lattice.
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Baxter(4, 23) has determined the exact free energy (among other quan-
tities) for the square-lattice Potts model on two special curves in the (J, q)-
plane:

eJ=1\- q (1.2)

eJ=&1\- 4&q (1.3)

Curve (1.2+) is known to correspond to the ferromagnetic critical point,
and Baxter(23) conjectured that curve (1.3+) corresponds to the antiferro-
magnetic critical point. For q=2 this gives the known exact value;(24) for
q=3 it predicts a zero-temperature critical point (Jc=&�), in accordance
with previous belief ;(25, 26) 4 and for q>3 it predicts that the putative criti-
cal point lies in the unphysical region (eJc<0), so that the entire physical
region &��J�0 lies in the disordered phase. In other words, Baxter(23)

predicts that qc(square lattice)=3, a prediction that we will verify numeri-
cally in this paper.

Some properties of the zero-temperature critical point for q=3 are
known (nonrigorously) as a consequence of the mapping of this model
onto a height model, whose long-wavelength behavior is that of a massless
Gaussian.(30�34) In particular, the critical exponents associated to the
staggered and uniform magnetizations are predicted(30, 32) to be 'stagg=1�3
and 'u=4�3, respectively.5 However, the approach to the critical point is
much less well understood. In what way, for example, do ! and /stagg

diverge as ; � �?
Nightingale and Schick, (35) using a phenomenological-renormalization

method based on infinite strips of width 2�8, claimed that the correlation
length diverges as !texp(c;r1.3). Wang, Swendsen, and Kotecky� , (10, 11)

using Monte Carlo, claimed to confirm this latter behavior. But this
behavior seems a priori implausible to us: the fundamental variable in the
Potts model is t=eJ, so an ordinary power-law critical point !t(t&tc)&&

with tc=0 would correspond to !te&;. Moreover, we suspect that this
model can be exactly solved (at least in the sense of determining the exact
asymptotic behavior as ; � �), in which case & would most likely be a
rational number. We are unable to imagine any mechanism leading to
!texp(c;}) with }{1.
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4 Note also that the q=3 model is exactly soluble at zero temperature in an arbitrary
magnetic field;(26�29) this might increase one's suspicions that the zero-temperature zero-field
case is critical.

5 These predictions have recently been verified numerically to high precision.(34)



In this paper we shall present numerical evidence that strongly
suggests the asymptotic behavior

!(;)=Ae2;; p[1+a1e&;+a2e&2;+ } } } ] (1.4)

with pr1. The critical exponent &=2 found here corresponds to an
operator with scaling dimension X=2&1�&=3�2, which is one of the
possibilities proposed by Saleur [36, p. 248]��though not the one he con-
sidered most likely! The multiplicative logarithmic correction ; p

t(log t) p

is harder to understand theoretically. Indeed, our data can arguably be
reconciled with p=0 at the price of including additive corrections to scaling
based on fractional powers of e&;:

!(;)=Ae2;[1+a1e&*1 ;+a2e&*2 ;+ } } } ] (1.5)

with *1r0.5. But this Ansatz too has its theoretical difficulties; see Sec-
tion 7.1 for discussion of all these issues. We hope, in any case, that the
numerical results presented here will serve as useful clues toward the exact
solution of this model. The works of Saleur(37, 36) and Henley(38) provide
some tantalizing ideas in this direction.

As for the staggered susceptibility, the predicted critical exponent '=
1�3(30, 32) leads via the scaling law #=(2&') & to the behavior /staggt!5�3.
Our numerical results are consistent with this prediction, unmodified by
any further powers of ;.

The plan of this paper is as follows: In Section 2 we set the notation and
recall briefly our finite size-scaling extrapolation method and the Wang�
Swendsen�Kotecky� (WSK) Monte Carlo algorithm. In Section 3 we report
our raw data. In Section 4 we analyze our static data for the 3-state model,
using the finite-size-scaling extrapolation method. In Section 5 we analyze the
dynamic critical behavior of the WSK algorithm for the 3-state model. In
Section 6 we analyze the data for the 4-state model. In Section 7 we summarize
our conclusions and discuss prospects for future work. In Appendix A we
prove a correlation inequality for antiferromagnetic Potts models on a bipar-
tite lattice. In Appendix B we prove the ergodicity of the WSK algorithm at
zero temperature for antiferromagnetic Potts models on a bipartite lattice.

2. PRELIMINARIES

2.1. Definitions and Notation

The q-state Potts model is defined by the reduced Hamiltonian

H=&J :
(xy)

$_x , _y
(2.1)
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where the sum runs over all nearest-neighbor pairs of lattice sites, and each
spin takes values _x # [1, 2,..., q]. The antiferromagnetic case corresponds
to J=&;<0. It is useful to represent the q possible values of the spin _x

by unit vectors e(1),..., e(q) # Rq&1 pointing from the center to the vertices of
a hypertetrahedron; these vectors satisfy

e(i) } e( j)=
q$ij&1
q&1

={
1

&
1

q&1

if i= j

if i{ j
(2.2)

We denote this ``vectorial'' spin by _x#e(_x ).
The two-point correlation function G(x, y) is defined by

G(x, y)#(_x } _y)

=�
q$_x , _y

&1

q&1 � (2.3)

Henceforth we exploit translation invariance and write G(x, y)=G(x& y).
We also define the Fourier-transformed correlation function at wavevector
(``momentum'') p:

G� ( p)=:
x

eip } xG(x) (2.4)

On the square lattice, the relevant staggering wavevector for antiferro-
magnetic Potts models is

pstagg#(?, ?) (2.5)

in the sense that G� ( p) is maximum at p=(?, ?): this follows from the
correlation inequality proven in Appendix A. On a finite L_L lattice with
periodic boundary conditions, we also define the four smallest nonzero
wavevectors,

pmin, \1#(\2?�L, 0) (2.6a)

pmin, \2#(0, \2?�L) (2.6b)
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We wish to study the following quantities:

(a) The energy6

E=($_0 , _e
) (2.7)

where e stands for any nearest neighbor of the origin.

(b) The staggered susceptibility

/stagg=G� ( pstagg) (2.8)

Note that on a finite lattice this is well-defined only if the lattice size L is
even.

(c) The second-moment correlation length, which is defined in finite
volume by

!L=
[(/stagg�Fstagg)&1]1�2

2 sin(?�L)
(2.9)

where

Fstagg#G� ( pstagg+ pmin, \1)=G� ( pstagg+ pmin, \2) (2.10)

is the correlation function at the wavevectors closest to pstagg .7 Again L
must be even.

All these quantities can be expressed as expectations involving the
following observables:

M2
stagg=\:

x

e ip stagg } x_x+
2

(2.11a)

Fstagg=
1
2 _}:x ei( p stagg+ p min, +1 ) } x_x }

2

+ }:x ei( p stagg+ pmin, +2 ) } x_x }
2

& (2.11b)

E= :
(xy)

$_x , _y
(2.11c)
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6 Here E is the mean energy per link in the antiferromagnetic model; we have chosen this
normalization in order to have 0�E�1, with E=0 for an antiferromagnetic ground state
and E=1 for a ferromagnetic ground state. The mean energy per site is of course 2E.

7 See, e.g., [39, Eqs. (4.11)�(4.13)] for the definition of the second-moment correlation length
in a ferromagnetic model, along with its motivation. Here we make the obvious transcription
to an antiferromagnetic model that orders at momentum pstagg=(?, ?).



Thus, we have

/stagg=
1
V

(M2
stagg) (2.12a)

Fstagg=
1
V

(Fstagg) (2.12b)

E=
1

2V
(E) (2.12c)

where V=L2 is the number of lattice sites.
In addition to studying the (static) behavior of the antiferromagnetic

Potts model, we are also interested in studying the dynamic critical
behavior of the Wang�Swendsen�Kotecky� (WSK) Monte Carlo algorithm.
So let A be an observable (i.e., a function of the spin configuration [_]).
We define the unnormalized autocorrelation function

CAA(t)=(As As+t) &(A) 2 (2.13)

where expectations are taken in equilibrium, and the corresponding nor-
malized autocorrelation function

\AA(t)=CAA(t)�CAA(0) (2.14)

We furthermore define the integrated autocorrelation time

{int, A=
1
2

:
�

t=&�

\AA(t) (2.15a)

=
1
2

+ :
�

t=1

\AA(t) (2.15b)

[The factor of 1
2 is purely a matter of convention; it is inserted so that

{int, Ar{ if \AA(t)re&|t|�{ with {>>1.] Finally, we define the exponential
autocorrelation times

{exp, A=lim sup
t � �

|t|
&log |\AA(t)|

(2.16)

and

{exp =sup
A

{exp, A (2.17)
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Note that {exp={exp, A whenever the observable A is not orthogonal to the
slowest mode of the system.

The integrated autocorrelation time controls the statistical error in
Monte Carlo measurements of (A). More precisely, the sample mean

A� #
1
n

:
n

t=1

At (2.18)

has variance

var(A� )=
1
n2 :

n

r, s=1

CAA(r&s) (2.19a)

=
1
n

:
n&1

t=&(n&1)
\1&

|t|
n + CAA(t) (2.19b)

r
1
n

(2{int, A) CAA(0) for n>>{ (2.19c)

Thus, the variance of A� is a factor 2{int, A larger than it would be if the
[At ] were statistically independent. Stated differently, the number of ``effec-
tively independent samples'' in a run of length n is roughly n�2{int, A . The
autocorrelation time {int, A (for interesting observables A) is therefore a
``figure of (de)merit'' of a Monte Carlo algorithm.

The integrated autocorrelation time {int, A can be estimated by
standard procedures of statistical time-series analysis.(40, 41) These proce-
dures also give statistically valid error bars on (A) and {int, A . For more
details, see [42, Appendix C] or [43, Section 3]. In this paper we have
used a self-consistent truncation window of width c{int, A , where c=6; this
choice is reasonable whenever the autocorrelation function \AA(t) decays
roughly exponentially, as it does here (see Section 5.2 below).

In setting the error bars on ! [defined in (2.9)] we have used the tri-
angle inequality; such error bars are overly conservative, but we were too
lazy to measure the cross-correlations between M2

stagg and Fstagg . (This was
a mistake, and in future work we will measure these cross-correlations.)

2.2. Finite-Size-Scaling Extrapolation Method

In the theory of critical phenomena we are usually interested in
infinite-volume systems, but Monte Carlo simulations are perforce carried
out on finite lattices. One traditional approach has been to run on lattice
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sizes L-6!, which are large enough so that the finite-size corrections are
negligible. In the past few years, however, methods have become available
for extrapolating finite-size data to L=�, based on finite-size-scaling
(FSS) theory; these methods allow one to work, for a given lattice size L,
at correlation lengths ! much larger than were previously attainable. In this
subsection we review an extremely powerful and general method of this
kind, due originally to Lu� scher, Weisz, and Wolff (14) and more recently
elaborated by our group.(20�22) This extrapolation method plays a crucial
role in the present work, as it allows us to reach correlation lengths ! of
order 5000, whereas in the traditional approach we would have been
limited to !�250.

Consider, for simplicity, a model controlled by a renormalization-
group fixed point having one relevant operator. (The parameter ; may be
multidimensional, but only one direction in ;-space should be relevant in
the RG sense. In other words, the continuum limit should be unique
modulo length rescalings.) Let us work on a periodic lattice of linear size L.
Let !(;, L) be a suitably defined finite-volume correlation length, such as
the second-moment correlation length defined by (2.9); and let O be any
long-distance observable (e.g., the correlation length or the susceptibility).
Then finite-size-scaling theory(44�46) predicts that

O(;, L)
O(;, �)

= fO(!(;, �)�L)+O(!&|, L&|) (2.20)

where fO is a universal (though usually unknown) function and | is a
correction-to-scaling exponent.8 It follows that if s is any fixed scale factor
(usually we take s=2), then

O(;, sL)
O(;, L)

=FO(!(;, L)�L; s)+O(!&|, L&|) (2.21)

where FO can easily be expressed in terms of fO and f! . (Henceforth we
shall suppress the argument s if it is clear from the context.) In other
words, if we make a plot of O(;, sL)�O(;, L) versus !(;, L)�L, then all the
points should lie on a single curve, modulo corrections of order !&|

and L&|.
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8 This form of finite-size scaling assumes hyperscaling, and thus is expected to hold only below
the upper critical dimension of the model. See, e.g., [46, Chapter I, Section 2.7]. Note also
that when we say fO is ``universal,'' we mean only that it is the same for all models in a given
universality class. Of course fO varies from one universality class to another.



Our method proceeds as follows:9 Make Monte Carlo runs at
numerous pairs (;, L) and (;, sL). Plot O(;, sL)�O(;, L) versus !(;, L)�L,
using those points satisfying both !(;, L)� some value !min and L� some
value Lmin . If all these points fall with good accuracy on a single curve
��thus verifying the Ansatz (2.21) for !�!min , L�Lmin ��choose a smooth
fitting function FO . Then, using the functions F! and FO , extrapolate the
pair (!, O) successively from L � sL � s2L � } } } � �.

We have chosen to use functions FO of the form10

FO(x)=1+a1e&1�x+a2e&2�x+ } } } +ane&n�x (2.22)
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9 Our method(20�22) is essentially identical to that of Lu� scher, Weisz, and Wolff .(14) The prin-
cipal difference is that Lu� scher et al. choose carefully their runs (;, L) so as to produce only
a few distinct values of x#!(;, L)�L, while we attempt to cover an entire interval of x.
Which approach is preferable depends on one's aims and on the available CPU time. Also,
the motivations are somewhat different: the primary aim of Lu� scher et al.(14) is to compare
the asymptotic behavior of the finite-size-scaling functions FO(x) at large x to the pertur-
bative predictions; they did not discuss the possibility of obtaining extrapolations to L=�
at each fixed ;, although this is of course implicit in their method. The method of Kim(15�19)

is also very closely related, but he compares lattice size L to � rather than to sL; this is
a (slight) disadvantage. Our method also has many features in common with that used by
Flyvbjerg and Larsen(47, 48) to extrapolate their 1�N-expansion finite-lattice data. It should
be emphasized that all these methods are completely general; although they were histori-
cally first applied to asymptotically free theories, (14) they are in no way limited to this case.
Note also that all these methods share the property of working only with observable quan-
tities (!, O, and L) and not with bare quantities (;). Therefore, they rely only on ``scaling''
and not on ``asymptotic scaling;'' and they differ from other FSS-based methods such as
phenomenological renormalization.(49)

10 In performing this fit, one may use any basis one pleases in the space spanned by the func-
tions [e&k�x]1�k�n ; the final result (in exact arithmetic) is of course the same. However,
in finite-precision arithmetic the calculation may become numerically unstable if the condi-
tion number of the least-squares matrix gets too large. In particular, this disaster occurs if
we use as a basis the monomials tk (where t=e&1�x). The trouble is that these monomials
are ``almost collinear'' in the relevant Hilbert space L2(+) defined by +(t)=�i w i $(t&ti ),
where ti are the values of t#e&L�!(;, L) arising in the data pairs and wi=1�[error on
O(2L)�O(L)]2 are the corresponding weights. To avoid this disaster, we should seek to use
a basis that is closer to orthogonal in L2(+). Of course, exactly orthogonalizing in L2(+)
is equivalent to diagonalizing the least-squares matrix, which is unfeasible; but we can do
well enough by using polynomials with zero constant term that are orthogonal with respect
to the simple measure w(t)=ta(tmax&t)b on [0, tmax], where a and b are some chosen num-
bers>&1. These polynomials are Jacobi polynomials fk(t)=tP (b, a+2)

k&1 (2t�tmax&1) for
1�k�n [50, pp. 321�328]. The idea here is that the measure w(t)=ta(tmax&t)b should
roughly approximate the measure +(t). We have here used a=0, b=&3�4; but the perfor-
mance is very insensitive to the choices of a and b. This cleverness in the choice of basis
vastly improves the numerical stability of the result, by reducing the condition number of
the matrix arising in the fit. Typical condition numbers using Jacobi polynomials are t20
for n=3 and t100 for n=9.



(Other forms of fitting functions can be used instead.) This form is partially
motivated by theory, which tells us that in some cases FO(x) � 1 exponen-
tially fast as x � 0. Typically a fit of order 3�n�13 is sufficient; the
required order depends on the range of x values covered by the data and
on the shape of the curve. Empirically, we increase n until the /2 of the fit
becomes essentially constant. The resulting /2 value provides a check on
the systematic errors arising from corrections to scaling and�or from the
inadequacies of the form (2.22).

The statistical error on the extrapolated value of O�(;)#O(;, �)
comes from three sources:

(i) Error on O(;, L), which gets multiplicatively propagated to O� .

(ii) Error on !(;, L), which affects the argument x#!(;, L)�L of
the scaling functions F! and FO .

(iii) Statistical error in our estimate of the coefficients a1 ,..., an in F!

and FO .

The errors of type (i) and (ii) depend on the statistics available at the single
point (;, L), while the error of type (iii) depends on the statistics in the
whole set of runs. Errors (i)+(ii) [resp. (i)+(ii)+(iii)] can be quantified
by performing an auxiliary Monte Carlo experiment in which the input
data at (;, L) [resp. the whole set of input data] are varied randomly
within their error bars and then extrapolated (we call this the method of
``fake data sets'').11

The discrepancies between the extrapolated values from different lat-
tice sizes at the same ;��to the extent that these exceed the estimated
statistical errors��can serve as a rough estimate of the remaining systematic
errors. More precisely, let Oi (i=1,..., m) be the extrapolated values at some
given ;, and let C=(Cij )

m
i, j=1 be the estimated covariance matrix for their

statistical errors.12 [Errors of type (iii) induce off-diagonal terms in C.]
Then we form the weighted average

O� =\ :
m

i, j=1

(C&1) ij Oj+<\ :
m

i, j=1

(C&1) ij+ , (2.23)
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11 In principle, ! and O should be generated from a joint Gaussian with the correct covariance.
We ignored this subtlety and simply generated independent fluctuations on ! and O.

12 This covariance matrix is computed from the auxiliary Monte Carlo experiment mentioned
in the preceding paragraph. Since this C is only a statistical estimate, the values of O� , _� and
R will vary slightly from one analysis run to the next.



the error bar on the weighted average

_� =\ :
m

i, j=1

(C&1) ij+
&1�2

, (2.24)

and the residual sum-of-squares

R= :
m

i, j=1

(Oi&O� )(C&1) ij (Oj&O� ). (2.25)

Under the assumptions that

(a) the fluctuations among the O1 ,..., Om are purely statistical [i.e.,
there are no systematic errors in the extrapolation], and

(b) the statistical error bars are correct,

R should be distributed as a /2 random variable with m&1 degrees of
freedom. Moreover, the sum of R over all the values of ; should be
distributed as a /2 random variable with � (m&1) degrees of freedom.13 In
this way, we can search for values of ; for which the extrapolations from
different lattice sizes are mutually inconsistent; and we can test the overall
self-consistency of the extrapolations.

A figure of (de)merit of the method is the relative variance on the
extrapolated value O�(;), multiplied by the computer time needed to
obtain it.14 We expect this relative variance-time product [for errors
(i)+(ii) only] to scale as

RVTP(;, L)r!�(;)d+z int, O GO(!�(;)�L) (2.26)

where d is the spatial dimension and zint, O is the dynamic critical exponent
of the Monte Carlo algorithm being used; here GO is a combination of
several static and dynamic finite-size-scaling functions, and depends both
on the observable O and on the algorithm but not on the scale factor s. As
!� �L tends to zero, we expect GO to diverge as (!� �L)&d (since it is waste-
ful to use a lattice L>>!�). As !��L tends to infinity, we expect

472 Ferreira and Sokal

13 This latter statement is not quite correct, as it ignores the correlations between the various
Oi at different ;, which are induced by errors of type (iii). [Correlations between different
Oi at the same ;, which are also induced by errors of type (iii), are included in
(2.23)�(2.25).]

14 At fixed (;, L), this variance-time product tends to a constant as the CPU time tends to
infinity. However, if the CPU time used is too small, then the variance-time product can be
significantly larger than its asymptotic value, due to nonlinear cross terms between error
sources (i) and (ii).



GOt(!� �L) p for some power p (see ref. 22 for details). Note that the
power p can be either positive or negative. If p>0, there is an optimum
value of !� �L; this determines the best lattice size at which to perform
runs for a given ;. If p<0, it is most efficient to use the smallest lattice size
for which the corrections to scaling are negligible compared to the statisti-
cal errors. [Of course, this analysis neglects errors of type (iii). The
optimization becomes much more complicated if errors of type (iii) are
included, as it is then necessary to optimize the set of runs as a whole.]

The reader is referred to refs. 21 and 22 for a fuller treatment of this
extrapolation method, in particular the finite-size-scaling theory and the
analysis of the propagation of statistical errors.

Let us make one final comment about the physics contained in the
scaling function F!(x). At the critical point ;c , the correlation length
!(;c , L) is proportional to L: one thus has

lim
L � �

!(;c , L)
L

=some value x* (2.27)

and

lim
L � �

!(;c , sL)
!(;c , L)

=s (2.28)

Therefore, x* is determined by the relation

F!(x*; s)=s (2.29)

The constant x* is characteristic of the massless field theory corresponding
to the given critical point, on a continuum torus with aspect ratio 1; for
two-dimensional models it should in principle be calculable via conformal
field theory. Likewise, for any observable O which behaves in the critical
region like Ot!#O �&, one has

FO(x*; s)=s#O�& (2.30)

2.3. Wang�Swendsen�Kotecky� (WSK) Algorithm

About a decade ago, Wang, Swendsen, and Kotecky� (WSK)(10, 11)

proposed an elegant and extraordinarily efficient Monte Carlo algorithm
for simulating the antiferromagnetic q-state Potts model on an arbitrary
finite graph G. The elementary update of their algorithm goes as follows:
Choose at random two distinct ``colors'' i, j # [1,..., q]; freeze all the spins
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_x currently taking values k{i, j, and allow the remaining spins to take
value either i or j. The induced model is thus an antiferromagnetic Ising
model (in zero magnetic field)15 on a subgraph of G; this model can be
updated by any legitimate Monte Carlo algorithm, such as the Swendsen�
Wang algorithm(51) or Wolff 's single-cluster variant (52) (we use the former).
It is easy to see that this algorithm leaves invariant the Gibbs measure of
the underlying Potts model.

At zero temperature (;=�) the antiferromagnetic Potts model
reduces to the equal-weight distribution on q-colorings of G, and the WSK
algorithm becomes: independently for each connected cluster of i� j spins,
either leave that cluster as is or else flip it (interchanging i and j).

The WSK algorithm is trivially seen to be ergodic at any nonzero tem-
perature. However, the ergodicity at zero temperature is a very subtle
problem, which has thus far been only partially resolved, Lubin and
Sokal(12) showed that for q=3 the WSK algorithm is non-ergodic at zero
temperature on periodic square lattices of size 3m_3n where m and n are
relatively prime. On the other hand, in Appendix B we shall prove that the
WSK algorithm is ergodic for all q whenever the graph G is bipartite; in
particular, this happens on periodic square lattices of size m_n whenever
m and n are both even. For other cases the ergodicity is an open problem.

It should be noted that the problem of ergodicity at zero temperature
is not merely a theoretical one, even if all our simulations are performed at
nonzero temperature. If the algorithm is non-ergodic at ;=�, then the
autocorrelation time must diverge as ; � �, even on a fixed finite lattice.16

This behavior, if it occurs, could be a severe impediment to high-precision
Monte Carlo study of the model. So it is fortunate that our model here lies
precisely in the situation for which ergodicity has been proven: the periodic
square lattice with L even.

3. SUMMARY OF OUR RUNS

We simulated the square-lattice Potts antiferromagnets for q=3 and
q=4, using the WSK algorithm with standard (multi-cluster) Swendsen�
Wang updates of the induced Ising model.
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15 The key point here is that the interaction energies i&k and j&k are equal. This guarantees
that the induced Ising model has zero magnetic field.

16 More precisely, it is the exponential autocorrelation time {exp (corresponding to the slowest
mode in the system) which must diverge. The integrated autocorrelation time {int, A for any
given observable A need not diverge; that depends on the choice of A. Moreover, even if
it does diverge, the divergence could be very weak, if A has ``weak overlap'' with the slowest
mode. On the other hand, the divergence of {exp already calls into question the convergence
to equilibrium, by raising the specter of ``metastability.''



For q=3 we ran on L_L periodic lattices with L=32, 64, 128, 256,
512, 1024, 1536 at 149 different pairs (;, L) in the range 2.0�;�6.0
(corresponding to 5�!��20000). Our data cover rather densely the
range 0.09�x#!(;, L)�L�0.63. Each data point comprises between
2_105 and 2.2_107 iterations of the WSK algorithm, which corresponds
to anywhere from 40000{ to 5_106{. We discarded the first 10000 itera-
tions of each run, which ought to be more than enough for equilibration
(>2000{!); we also made spot checks for evidence of initialization bias
after the discard interval, and found none. Most of the runs used a random
initial configuration (``hot start''). In some cases with L=32, 64 we made
multiple independent runs, some of which used an antiferromagnetically
ordered initial configuration (``cold start''); statistical tests showed com-
plete agreement between the runs. The data from independent runs were
merged statistically in the usual way. The raw data for q=3 can be found
in Table 1.

The CPU time for our program is 4.4L2 +s�sweep on an IBM RS-
6000�370, and the total CPU time was about 2.5 years on this same
machine. (This is an ``equivalent'' figure: in fact our runs were performed
on a variety of mostly slower machines in both New York and Belo
Horizonte, so the actual total CPU time was more than this.)

For q=4 it sufficed to make a small number of runs for L=32, 64; the
total CPU time was less than 3 days on an IBM RS-6000�370. The raw
data can be found in Table 2.

4. DATA ANALYSIS: q=3, STATIC QUANTITIES

In this section we analyze the static data for q=3. Concerning the
correlation length ! and the staggered susceptibility /stagg , we first extrapo-
late these quantities to infinite volume (Section 4.1) and then analyze the
behavior as ; � � of the extrapolated data (Section 4.2). We conclude by
taking a brief look at the energy E (Section 4.3).

4.1. Extrapolation to Infinite Volume

We shall extrapolate ! and /stagg to infinite volume using the method
of Section 2.2 with scale factor s=2. This method is specified by three
parameters: the cut points !min and Lmin , and the interpolation order n.
We shall therefore vary these parameters systematically and study the
systematic errors attributable to them.

4.1.1. Correlation Length. In Table 3 we report the quality of
the fit��chi-squared (/2), number of degrees of freedom (DF), /2�DF, and
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Table 1. Our Monte Carlo Data for the 3-State Potts Antiferromagneta

L ; Total Discard ! /stagg E {int, M
2
stagg

{int, E

32 2.00 200000 10000 5.572 (0.032) 49.02 (0.22) 0.07027100 (0.00005919) 2.53 (0.05) 3.16 (0.06)
32 2.25 200000 10000 8.222 (0.036) 89.75 (0.38) 0.04771217 (0.00005094) 3.39 (0.07) 3.35 (0.07)
32 2.50 6000000 60000 11.594 (0.008) 145.77 (0.09) 0.03207236 (0.00000761) 4.17 (0.02) 3.49 (0.01)
32 2.70 6000000 60000 14.116 (0.009) 186.45 (0.09) 0.02354641 (0.00000625) 4.31 (0.02) 3.36 (0.01)
32 3.00 6000000 60000 16.834 (0.009) 227.51 (0.08) 0.01529180 (0.00000460) 4.19 (0.02) 3.06 (0.01)
32 3.20 6000000 60000 17.956 (0.009) 243.94 (0.07) 0.01171553 (0.00000381) 4.14 (0.02) 2.91 (0.01)
32 3.50 22000000 220000 19.015 (0.005) 259.29 (0.03) 0.00804395 (0.00000155) 4.12 (0.01) 2.76 (0.01)
32 4.00 6000000 60000 19.812 (0.009) 271.55 (0.06) 0.00449722 (0.00000209) 4.22 (0.02) 2.63 (0.00)
32 4.50 6000000 60000 20.130 (0.009) 276.87 (0.06) 0.00259774 (0.00000153) 4.34 (0.02) 2.56 (0.00)
32 5.00 6000000 60000 20.263 (0.009) 279.45 (0.06) 0.00153121 (0.00000116) 4.41 (0.02) 2.55 (0.00)

64 2.00 200000 10000 5.579 (0.074) 49.43 (0.20) 0.07048701 (0.00002977) 1.75 (0.03) 3.21 (0.07)
64 2.25 200000 10000 8.534 (0.064) 97.32 (0.42) 0.04814820 (0.00002498) 2.07 (0.03) 3.27 (0.07)
64 2.50 2000000 20000 13.181 (0.021) 196.58 (0.27) 0.03288755 (0.00000638) 2.96 (0.02) 3.31 (0.02)
64 2.60 200000 10000 15.628 (0.073) 256.47 (1.15) 0.02829046 (0.00001911) 3.58 (0.08) 3.32 (0.07)
64 2.70 2000000 20000 18.349 (0.024) 327.45 (0.42) 0.02432931 (0.00000549) 3.86 (0.03) 3.37 (0.02)
64 2.80 200000 10000 21.167 (0.083) 403.52 (1.53) 0.02098848 (0.00001660) 4.15 (0.10) 3.50 (0.07)
64 2.90 200000 10000 23.956 (0.090) 477.13 (1.65) 0.01814113 (0.00001506) 4.49 (0.11) 3.35 (0.07)
64 3.00 2000000 20000 26.715 (0.029) 549.54 (0.51) 0.01572752 (0.00000419) 4.46 (0.04) 3.23 (0.02)
64 3.10 200000 10000 29.067 (0.098) 609.52 (1.61) 0.01371684 (0.00001249) 4.49 (0.11) 3.21 (0.07)
64 3.20 2000000 20000 31.188 (0.031) 661.13 (0.48) 0.01197822 (0.00000345) 4.44 (0.04) 3.04 (0.02)
64 3.30 200000 10000 32.883 (0.098) 702.93 (1.46) 0.01050532 (0.00001010) 4.31 (0.10) 2.94 (0.06)
64 3.40 200000 10000 34.326 (0.101) 736.49 (1.40) 0.00924902 (0.00000937) 4.26 (0.10) 2.92 (0.06)
64 3.50 2000000 20000 35.517 (0.031) 764.61 (0.42) 0.00816692 (0.00000265) 4.36 (0.03) 2.83 (0.01)
64 3.60 200000 10000 36.605 (0.102) 789.12 (1.29) 0.00722325 (0.00000786) 4.21 (0.10) 2.77 (0.05)
64 3.70 200000 10000 37.183 (0.102) 804.16 (1.26) 0.00641653 (0.00000739) 4.38 (0.11) 2.79 (0.05)
64 3.80 200000 10000 38.082 (0.102) 822.54 (1.21) 0.00571353 (0.00000668) 4.24 (0.10) 2.63 (0.05)
64 3.90 200000 10000 38.398 (0.101) 832.77 (1.19) 0.00508284 (0.00000638) 4.31 (0.10) 2.70 (0.05)
64 4.00 2000000 20000 38.786 (0.031) 842.08 (0.36) 0.00453673 (0.00000183) 4.21 (0.03) 2.65 (0.01)
64 4.50 2000000 20000 39.891 (0.032) 871.56 (0.34) 0.00261704 (0.00000134) 4.32 (0.03) 2.57 (0.01)
64 5.00 2000000 20000 40.325 (0.032) 884.30 (0.34) 0.00153744 (0.00000100) 4.43 (0.04) 2.54 (0.01)

128 2.00 200000 10000 5.442 (0.244) 49.37 (0.20) 0.07048002 (0.00001449) 1.52 (0.02) 3.05 (0.06)
128 2.25 200000 10000 8.817 (0.174) 98.61 (0.41) 0.04817305 (0.00001255) 1.70 (0.03) 3.30 (0.07)
128 2.50 200000 10000 13.335 (0.136) 201.66 (0.84) 0.03295390 (0.00001007) 1.81 (0.03) 3.20 (0.07)
128 2.60 200000 10000 15.967 (0.131) 271.66 (1.18) 0.02837582 (0.00000939) 2.10 (0.04) 3.25 (0.07)
128 2.70 200000 10000 19.267 (0.127) 368.40 (1.59) 0.02450218 (0.00000868) 2.27 (0.04) 3.26 (0.07)
128 2.80 200000 10000 23.237 (0.129) 500.07 (2.20) 0.02118313 (0.00000790) 2.63 (0.05) 3.20 (0.07)
128 2.90 200000 10000 27.867 (0.138) 672.92 (3.01) 0.01836736 (0.00000724) 3.11 (0.06) 3.14 (0.06)
128 2.95 200000 10000 30.271 (0.143) 767.77 (3.43) 0.01711320 (0.00000701) 3.41 (0.07) 3.20 (0.07)
128 3.00 200000 10000 33.203 (0.151) 886.35 (3.92) 0.01595897 (0.00000679) 3.79 (0.08) 3.25 (0.07)
128 3.10 200000 10000 38.836 (0.162) 1121.29 (4.57) 0.01389865 (0.00000626) 4.04 (0.09) 3.21 (0.07)
128 3.20 200000 10000 44.917 (0.176) 1382.17 (5.10) 0.01213496 (0.00000569) 4.40 (0.11) 3.13 (0.06)
128 3.30 200000 10000 50.858 (0.187) 1630.23 (5.32) 0.01064182 (0.00000528) 4.58 (0.11) 3.12 (0.06)
128 3.40 200000 10000 55.937 (0.195) 1845.96 (5.34) 0.00935202 (0.00000477) 4.68 (0.12) 2.95 (0.06)
128 3.45 200000 10000 58.310 (0.196) 1935.27 (5.23) 0.00877467 (0.00000460) 4.66 (0.11) 2.95 (0.06)
128 3.50 1000000 10000 60.607 (0.087) 2029.01 (2.21) 0.00824378 (0.00000193) 4.48 (0.05) 2.93 (0.03)

a ``Total'' is the total number of WSK iterations performed. ``Discard'' is the number of itera-
tions discarded for equilibration. Error bars (one standard deviation) are shown in
parentheses.
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Table 1. (Continued )

L ; Total Discard ! /stagg E {int, M
2
stagg

{int, E

128 3.60 200000 10000 64.455 (0.202) 2178.61 (4.87) 0.00728348 (0.00000400) 4.54 (0.11) 2.82 (0.05)
128 3.70 200000 10000 67.788 (0.203) 2304.67 (4.61) 0.00646723 (0.00000375) 4.41 (0.11) 2.80 (0.05)
128 3.80 200000 10000 70.305 (0.207) 2403.28 (4.43) 0.00574268 (0.00000342) 4.47 (0.11) 2.73 (0.05)
128 3.90 200000 10000 72.160 (0.207) 2474.84 (4.24) 0.00511211 (0.00000320) 4.40 (0.11) 2.72 (0.05)
128 3.95 200000 10000 73.286 (0.201) 2513.98 (4.10) 0.00482635 (0.00000313) 4.29 (0.10) 2.72 (0.05)
128 4.00 200000 10000 73.922 (0.207) 2542.02 (4.14) 0.00455744 (0.00000300) 4.48 (0.11) 2.71 (0.05)
128 4.10 200000 10000 75.419 (0.204) 2594.69 (3.94) 0.00406992 (0.00000280) 4.32 (0.10) 2.69 (0.05)
128 4.20 200000 10000 76.508 (0.205) 2636.64 (3.92) 0.00363639 (0.00000262) 4.52 (0.11) 2.64 (0.05)
128 4.30 1000000 10000 77.427 (0.090) 2670.89 (1.64) 0.00325960 (0.00000107) 4.29 (0.04) 2.62 (0.02)
128 4.40 1000000 10000 78.050 (0.089) 2697.29 (1.61) 0.00291971 (0.00000101) 4.27 (0.04) 2.61 (0.02)
128 4.50 1000000 10000 78.772 (0.090) 2723.43 (1.59) 0.00262197 (0.00000095) 4.32 (0.04) 2.59 (0.02)
128 4.60 1000000 10000 79.136 (0.090) 2742.07 (1.59) 0.00235324 (0.00000090) 4.37 (0.05) 2.59 (0.02)
128 4.70 1000000 10000 79.505 (0.091) 2756.45 (1.58) 0.00211402 (0.00000084) 4.41 (0.05) 2.56 (0.02)
128 4.80 1000000 10000 79.952 (0.090) 2771.60 (1.56) 0.00190149 (0.00000080) 4.40 (0.05) 2.56 (0.02)
128 4.90 1000000 10000 80.091 (0.091) 2781.79 (1.56) 0.00171139 (0.00000075) 4.42 (0.05) 2.56 (0.02)
128 5.00 1000000 10000 80.174 (0.091) 2788.86 (1.56) 0.00154123 (0.00000071) 4.42 (0.05) 2.53 (0.02)
128 5.10 1000000 10000 80.443 (0.090) 2797.74 (1.54) 0.00138704 (0.00000067) 4.37 (0.05) 2.52 (0.02)
128 5.20 1000000 10000 80.612 (0.091) 2805.76 (1.54) 0.00125012 (0.00000064) 4.40 (0.05) 2.55 (0.02)

256 2.50 200000 10000 13.104 (0.422) 201.34 (0.81) 0.03295828 (0.00000517) 1.57 (0.02) 3.34 (0.07)
256 2.60 200000 10000 16.185 (0.356) 273.13 (1.08) 0.02839657 (0.00000461) 1.56 (0.02) 3.18 (0.07)
256 2.70 200000 10000 19.126 (0.325) 369.05 (1.51) 0.02450313 (0.00000423) 1.69 (0.03) 3.15 (0.06)
256 2.80 200000 10000 23.045 (0.293) 502.20 (2.08) 0.02119791 (0.00000393) 1.76 (0.03) 3.16 (0.06)
256 2.90 200000 10000 28.119 (0.269) 693.32 (2.93) 0.01837763 (0.00000362) 1.90 (0.03) 3.16 (0.06)
256 3.00 200000 10000 34.305 (0.258) 954.62 (4.09) 0.01599052 (0.00000333) 2.09 (0.04) 3.13 (0.06)
256 3.10 200000 10000 41.701 (0.260) 1313.21 (5.88) 0.01394816 (0.00000305) 2.48 (0.04) 3.10 (0.06)
256 3.20 200000 10000 50.453 (0.269) 1803.02 (8.21) 0.01219458 (0.00000281) 2.96 (0.06) 3.05 (0.06)
256 3.30 200000 10000 60.839 (0.286) 2439.41 (10.78) 0.01069957 (0.00000263) 3.35 (0.07) 3.08 (0.06)
256 3.40 200000 10000 72.254 (0.316) 3198.35 (13.71) 0.00940398 (0.00000238) 3.99 (0.09) 2.94 (0.06)
256 3.50 1000000 10000 84.685 (0.150) 4036.07 (6.91) 0.00829150 (0.00000096) 4.38 (0.05) 2.92 (0.03)
256 3.60 200000 10000 96.720 (0.365) 4854.04 (16.67) 0.00732740 (0.00000203) 4.48 (0.11) 2.85 (0.06)
256 3.70 200000 10000 107.817 (0.380) 5595.86 (16.87) 0.00648727 (0.00000188) 4.59 (0.11) 2.82 (0.05)
256 3.80 200000 10000 117.698 (0.392) 6228.98 (16.33) 0.00576244 (0.00000175) 4.50 (0.11) 2.81 (0.05)
256 3.90 200000 10000 125.908 (0.414) 6756.45 (16.21) 0.00512698 (0.00000163) 4.77 (0.12) 2.78 (0.05)
256 4.00 200000 10000 132.919 (0.413) 7173.99 (15.25) 0.00456912 (0.00000151) 4.62 (0.11) 2.72 (0.05)
256 4.10 200000 10000 138.468 (0.409) 7524.03 (14.19) 0.00407866 (0.00000140) 4.40 (0.11) 2.64 (0.05)
256 4.20 200000 10000 143.448 (0.409) 7812.70 (13.50) 0.00364854 (0.00000133) 4.30 (0.10) 2.70 (0.05)
256 4.30 200000 10000 146.776 (0.404) 8024.93 (12.99) 0.00326371 (0.00000124) 4.29 (0.10) 2.66 (0.05)
256 4.40 200000 10000 150.305 (0.412) 8207.19 (12.71) 0.00292610 (0.00000116) 4.36 (0.10) 2.58 (0.05)
256 4.50 1000000 10000 152.769 (0.180) 8361.37 (5.39) 0.00262364 (0.00000048) 4.33 (0.04) 2.62 (0.02)
256 4.60 1000000 10000 154.560 (0.181) 8472.30 (5.32) 0.00235575 (0.00000045) 4.39 (0.05) 2.56 (0.02)
256 4.65 1000000 10000 154.914 (0.181) 8512.61 (5.26) 0.00223281 (0.00000043) 4.36 (0.05) 2.57 (0.02)
256 4.70 1000000 10000 155.773 (0.179) 8560.34 (5.21) 0.00211659 (0.00000042) 4.35 (0.05) 2.57 (0.02)
256 4.80 1000000 10000 157.217 (0.179) 8645.33 (5.05) 0.00190282 (0.00000040) 4.25 (0.04) 2.54 (0.02)
256 4.90 1000000 10000 157.807 (0.179) 8696.27 (5.02) 0.00171308 (0.00000038) 4.27 (0.04) 2.53 (0.02)
256 5.00 1000000 10000 158.676 (0.180) 8750.44 (5.01) 0.00154114 (0.00000036) 4.35 (0.05) 2.54 (0.02)
256 5.10 1000000 10000 159.453 (0.182) 8796.18 (5.02) 0.00138804 (0.00000034) 4.43 (0.05) 2.57 (0.02)
256 5.20 1000000 10000 160.061 (0.182) 8833.00 (4.98) 0.00125104 (0.00000032) 4.42 (0.05) 2.56 (0.02)
256 5.30 1000000 10000 160.395 (0.182) 8864.52 (4.96) 0.00112784 (0.00000030) 4.43 (0.05) 2.53 (0.02)
256 5.40 1000000 10000 160.835 (0.182) 8892.90 (4.93) 0.00101687 (0.00000029) 4.40 (0.05) 2.52 (0.02)

512 2.80 500000 10000 23.428 (0.577) 505.57 (1.25) 0.02119445 (0.00000123) 1.54 (0.01) 3.22 (0.04)
512 2.90 500000 10000 27.679 (0.508) 690.13 (1.74) 0.01838339 (0.00000113) 1.61 (0.01) 3.17 (0.04)
512 3.00 500000 10000 33.500 (0.442) 949.08 (2.41) 0.01598973 (0.00000104) 1.64 (0.02) 3.14 (0.04)
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Table 1. (Continued )

L ; Total Discard ! /stagg E {int, M
2
stagg

{int, E

512 3.10 200000 10000 41.719 (0.619) 1325.44 (5.48) 0.01394838 (0.00000152) 1.73 (0.03) 3.07 (0.06)
512 3.20 200000 10000 50.521 (0.559) 1830.24 (7.59) 0.01220209 (0.00000139) 1.81 (0.03) 2.99 (0.06)
512 3.30 500000 10000 61.816 (0.330) 2552.67 (6.83) 0.01070391 (0.00000080) 2.03 (0.02) 3.00 (0.04)
512 3.40 500000 10000 75.572 (0.320) 3563.37 (9.72) 0.00941670 (0.00000075) 2.29 (0.02) 2.99 (0.04)
512 3.50 500000 10000 92.478 (0.330) 4976.76 (14.11) 0.00830439 (0.00000068) 2.76 (0.03) 2.90 (0.04)
512 3.60 500000 10000 112.345 (0.350) 6836.58 (19.37) 0.00734161 (0.00000063) 3.26 (0.04) 2.82 (0.03)
512 3.65 500000 10000 123.233 (0.366) 7933.08 (22.46) 0.00690976 (0.00000061) 3.60 (0.05) 2.85 (0.03)
512 3.70 500000 10000 135.191 (0.382) 9165.68 (25.34) 0.00650506 (0.00000058) 3.87 (0.05) 2.81 (0.03)
512 3.80 500000 10000 159.602 (0.412) 11762.98 (30.00) 0.00577529 (0.00000054) 4.29 (0.06) 2.74 (0.03)
512 3.90 500000 10000 184.606 (0.444) 14484.50 (32.72) 0.00513675 (0.00000050) 4.52 (0.07) 2.73 (0.03)
512 4.00 1000000 10000 208.293 (0.333) 16999.84 (23.79) 0.00457741 (0.00000033) 4.66 (0.05) 2.69 (0.02)
512 4.10 500000 10000 228.543 (0.493) 19137.93 (33.65) 0.00408612 (0.00000044) 4.76 (0.07) 2.70 (0.03)
512 4.15 200000 10000 238.737 (0.802) 20119.40 (53.26) 0.00386233 (0.00000068) 4.76 (0.12) 2.62 (0.05)
512 4.20 500000 10000 247.620 (0.501) 21047.86 (32.20) 0.00365104 (0.00000041) 4.70 (0.07) 2.70 (0.03)
512 4.30 1000000 10000 262.509 (0.359) 22500.19 (21.64) 0.00326851 (0.00000027) 4.62 (0.05) 2.63 (0.02)
512 4.40 1000000 10000 274.947 (0.359) 23690.60 (20.38) 0.00292813 (0.00000025) 4.51 (0.05) 2.62 (0.02)
512 4.50 1000000 10000 284.440 (0.363) 24612.46 (19.59) 0.00262622 (0.00000024) 4.52 (0.05) 2.58 (0.02)
512 4.60 1000000 10000 292.529 (0.362) 25377.99 (18.57) 0.00235787 (0.00000022) 4.40 (0.05) 2.56 (0.02)
512 4.65 1000000 10000 296.361 (0.362) 25722.12 (18.29) 0.00223424 (0.00000022) 4.42 (0.05) 2.59 (0.02)
512 4.70 1000000 10000 298.694 (0.360) 25963.60 (17.91) 0.00211828 (0.00000021) 4.36 (0.05) 2.56 (0.02)
512 4.80 1000000 10000 303.862 (0.362) 26460.25 (17.54) 0.00190436 (0.00000020) 4.40 (0.05) 2.58 (0.02)
512 4.90 1000000 10000 308.228 (0.363) 26871.14 (17.09) 0.00171327 (0.00000019) 4.36 (0.05) 2.56 (0.02)
512 5.00 1000000 10000 311.295 (0.359) 27167.08 (16.42) 0.00154191 (0.00000018) 4.24 (0.04) 2.55 (0.02)
512 5.10 1000000 10000 313.277 (0.362) 27407.74 (16.52) 0.00138888 (0.00000017) 4.39 (0.05) 2.58 (0.02)
512 5.20 1000000 10000 316.141 (0.361) 27635.16 (16.17) 0.00125163 (0.00000016) 4.37 (0.05) 2.53 (0.02)
512 5.30 1000000 10000 317.469 (0.362) 27803.43 (16.16) 0.00112815 (0.00000015) 4.44 (0.05) 2.56 (0.02)
512 5.40 1000000 10000 318.518 (0.364) 27951.61 (16.08) 0.00101697 (0.00000014) 4.45 (0.05) 2.53 (0.02)
512 5.50 1000000 10000 320.114 (0.364) 28082.10 (15.88) 0.00091721 (0.00000014) 4.44 (0.05) 2.53 (0.02)
512 5.60 600000 10000 320.704 (0.470) 28166.84 (20.43) 0.00082793 (0.00000017) 4.42 (0.06) 2.49 (0.03)
512 5.70 1000000 10000 321.343 (0.363) 28247.64 (15.64) 0.00074740 (0.00000012) 4.39 (0.05) 2.51 (0.02)

1024 3.50 200000 10000 93.782 (1.169) 5025.28 (21.00) 0.00830634 (0.00000055) 1.79 (0.03) 2.92 (0.06)
1024 4.00 200000 10000 253.855 (1.161) 26336.19 (115.46) 0.00458170 (0.00000038) 3.53 (0.08) 2.76 (0.05)
1024 4.20 200000 10000 351.988 (1.424) 43182.70 (167.96) 0.00365419 (0.00000033) 4.66 (0.11) 2.64 (0.05)
1024 4.50 200000 10000 481.901 (1.582) 64990.58 (167.30) 0.00262718 (0.00000027) 4.72 (0.12) 2.58 (0.05)
1024 4.70 200000 10000 543.182 (1.645) 74421.27 (152.23) 0.00211861 (0.00000024) 4.66 (0.11) 2.57 (0.05)
1024 4.80 435000 10000 564.506 (1.102) 77670.79 (95.63) 0.00190502 (0.00000015) 4.45 (0.07) 2.56 (0.03)
1024 4.90 350000 10000 581.321 (1.233) 80085.31 (103.34) 0.00171359 (0.00000016) 4.49 (0.08) 2.57 (0.04)
1024 5.00 200000 10000 597.074 (1.646) 82401.80 (128.63) 0.00154236 (0.00000020) 4.25 (0.10) 2.47 (0.04)
1024 5.10 500000 10000 604.335 (1.023) 83709.00 (79.97) 0.00138923 (0.00000012) 4.39 (0.07) 2.52 (0.03)
1024 5.20 315000 10000 614.282 (1.298) 85148.87 (97.33) 0.00125153 (0.00000014) 4.33 (0.08) 2.55 (0.04)
1024 5.30 300000 10000 619.635 (1.346) 86150.77 (99.78) 0.00112806 (0.00000014) 4.46 (0.09) 2.44 (0.04)
1024 5.40 500000 10000 624.864 (1.029) 86978.99 (75.68) 0.00101735 (0.00000010) 4.45 (0.07) 2.55 (0.03)
1024 5.50 500000 10000 630.919 (1.022) 87719.01 (72.87) 0.00091759 (0.00000010) 4.32 (0.06) 2.51 (0.03)
1024 5.60 500000 10000 634.020 (1.030) 88261.17 (72.93) 0.00082786 (0.00000009) 4.40 (0.07) 2.53 (0.03)
1024 5.70 350000 10000 636.439 (1.243) 88750.82 (86.74) 0.00074709 (0.00000010) 4.39 (0.08) 2.53 (0.04)
1024 5.80 500000 10000 639.532 (1.034) 89200.43 (71.47) 0.00067443 (0.00000008) 4.39 (0.07) 2.53 (0.03)
1024 5.80 400000 10000 640.955 (1.148) 89486.27 (79.44) 0.00060909 (0.00000009) 4.36 (0.07) 2.54 (0.03)

1536 5.40 200000 10000 921.169 (2.484) 167548.48 (247.24) 0.00101730 (0.00000011) 4.47 (0.11) 2.47 (0.04)
1536 5.50 300000 10000 929.501 (2.010) 169381.15 (196.44) 0.00091779 (0.00000008) 4.45 (0.09) 2.56 (0.04)
1536 5.60 500000 10000 939.605 (1.537) 171375.42 (146.36) 0.00082793 (0.00000006) 4.33 (0.06) 2.51 (0.03)
1536 5.70 500000 10000 945.918 (1.553) 172479.44 (147.38) 0.00074711 (0.00000006) 4.48 (0.07) 2.51 (0.03)
1536 6.00 200000 10000 963.094 (2.481) 175739.34 (225.37) 0.00055010 (0.00000008) 4.39 (0.11) 2.46 (0.04)
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Table 2. Our Monte Carlo Data for the 4-State Potts Antiferromagneta

L ; Total Discard ! /stagg E {int, M
2
stagg

{int, E

32 0.50 1000000 10000 0.408 (0.088) 1.64 (0.00) 0.33333424 (0.00004069) 2.47 (0.02) 2.86 (0.02)
32 1.00 1000000 10000 0.713 (0.051) 2.62 (0.00) 0.20768309 (0.00003587) 2.49 (0.02) 3.12 (0.03)
32 1.50 1000000 10000 0.963 (0.039) 3.86 (0.01) 0.12339135 (0.00002967) 2.54 (0.02) 3.39 (0.03)
32 2.00 1000000 10000 1.284 (0.029) 5.22 (0.01) 0.07216655 (0.00002316) 2.54 (0.02) 3.51 (0.03)
32 2.50 1000000 10000 1.494 (0.026) 6.45 (0.01) 0.04227138 (0.00001777) 2.56 (0.02) 3.55 (0.03)
32 2.60 200000 10000 1.597 (0.055) 6.72 (0.03) 0.03809065 (0.00003844) 2.52 (0.05) 3.57 (0.08)
32 2.70 200000 10000 1.513 (0.060) 6.85 (0.03) 0.03421029 (0.00003588) 2.72 (0.05) 3.49 (0.07)
32 2.80 200000 10000 1.597 (0.056) 7.06 (0.03) 0.03081867 (0.00003480) 2.53 (0.05) 3.63 (0.08)
32 2.90 200000 10000 1.707 (0.053) 7.32 (0.03) 0.02778558 (0.00003256) 2.53 (0.05) 3.51 (0.08)
32 3.00 1000000 10000 1.694 (0.023) 7.48 (0.01) 0.02498434 (0.00001345) 2.59 (0.02) 3.53 (0.03)
32 3.10 200000 10000 1.686 (0.053) 7.62 (0.03) 0.02251044 (0.00002917) 2.56 (0.05) 3.50 (0.07)
32 3.20 200000 10000 1.737 (0.052) 7.76 (0.03) 0.02031029 (0.00002774) 2.54 (0.05) 3.53 (0.08)
32 3.30 200000 10000 1.727 (0.052) 7.90 (0.03) 0.01828279 (0.00002590) 2.60 (0.05) 3.45 (0.07)
32 3.40 200000 10000 1.744 (0.051) 8.03 (0.03) 0.01646475 (0.00002463) 2.54 (0.05) 3.49 (0.07)
32 3.50 1000000 10000 1.832 (0.022) 8.20 (0.02) 0.01488912 (0.00001037) 2.63 (0.02) 3.55 (0.03)
32 3.60 200000 10000 1.791 (0.052) 8.27 (0.04) 0.01341060 (0.00002191) 2.71 (0.05) 3.43 (0.07)
32 3.70 200000 10000 1.855 (0.050) 8.44 (0.04) 0.01207502 (0.00002158) 2.61 (0.05) 3.64 (0.08)
32 3.80 200000 10000 1.870 (0.049) 8.52 (0.04) 0.01094776 (0.00002028) 2.59 (0.05) 3.56 (0.08)
32 3.90 200000 10000 1.864 (0.049) 8.58 (0.04) 0.00985439 (0.00001904) 2.63 (0.05) 3.53 (0.08)
32 4.00 1000000 10000 1.865 (0.022) 8.68 (0.02) 0.00891195 (0.00000792) 2.63 (0.02) 3.53 (0.03)
32 4.10 200000 10000 1.837 (0.050) 8.69 (0.04) 0.00805595 (0.00001717) 2.58 (0.05) 3.53 (0.08)
32 4.20 200000 10000 1.890 (0.049) 8.79 (0.04) 0.00726329 (0.00001631) 2.69 (0.05) 3.51 (0.08)
32 4.30 200000 10000 1.907 (0.048) 8.87 (0.04) 0.00656180 (0.00001557) 2.57 (0.05) 3.54 (0.08)
32 4.40 200000 10000 1.917 (0.048) 8.96 (0.04) 0.00591430 (0.00001478) 2.61 (0.05) 3.54 (0.08)
32 4.50 1000000 10000 1.907 (0.021) 8.99 (0.02) 0.00536798 (0.00000617) 2.62 (0.02) 3.54 (0.03)
32 4.60 200000 10000 1.906 (0.049) 9.05 (0.04) 0.00486859 (0.00001338) 2.72 (0.05) 3.54 (0.08)
32 4.70 200000 10000 1.911 (0.049) 9.06 (0.04) 0.00439399 (0.00001268) 2.62 (0.05) 3.52 (0.08)
32 4.80 200000 10000 1.905 (0.049) 9.11 (0.04) 0.00395714 (0.00001187) 2.61 (0.05) 3.45 (0.07)
32 4.90 200000 10000 1.996 (0.048) 9.20 (0.04) 0.00358136 (0.00001127) 2.78 (0.05) 3.43 (0.07)
32 5.00 1000000 10000 1.960 (0.021) 9.21 (0.02) 0.00323220 (0.00000472) 2.63 (0.02) 3.47 (0.03)

64 2.50 1000000 10000 1.559 (0.093) 6.47 (0.01) 0.04228318 (0.00000895) 2.52 (0.02) 3.60 (0.03)
64 3.00 1000000 10000 1.765 (0.083) 7.47 (0.01) 0.02497250 (0.00000678) 2.51 (0.02) 3.56 (0.03)
64 3.50 1000000 10000 1.729 (0.085) 8.17 (0.01) 0.01488177 (0.00000517) 2.51 (0.02) 3.53 (0.03)
64 4.00 1000000 10000 1.754 (0.084) 8.65 (0.02) 0.00890631 (0.00000397) 2.49 (0.02) 3.53 (0.03)
64 4.50 1000000 10000 1.890 (0.078) 9.00 (0.02) 0.00536320 (0.00000308) 2.52 (0.02) 3.56 (0.03)
64 5.00 1000000 10000 1.894 (0.078) 9.18 (0.02) 0.00323899 (0.00000236) 2.52 (0.02) 3.48 (0.03)

a ``Total'' is the total number of WSK iterations performed. ``Discard'' is the number of itera-
tions discarded for equilibration. Error bars (one standard deviation) are shown in
parentheses.
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Table 3. /2 for the Fit (2.22) of !(;, 2L)�!(;, L) versus !(;, L)�La

Lmin n=3 n=4 n=5 n=6 n=7 n=8 n=9

32 571.70, 94 178.98, 93 138.80, 92 138.62, 91 135.95, 90 134.00, 89 125.94, 88
6.08, 0.00 1.92, 0.00 1.51, 0.10 1.52, 0.10 1.51, 0.10 1.51, 0.10 1.43, 0.50

64 263.84, 86 113.41, 85 100.21, 84 100.11, 83 98.52, 82 96.49, 81 92.60, 80
3.07, 0.00 1.33, 2.10 1.19, 11.00 1.21, 9.70 1.20, 10.30 1.19, 11.50 1.16, 15.90

128 206.52, 68 87.32, 67 75.41, 66 75.21, 65 72.97, 64 72.58, 63 70.02, 62
3.04, 0.00 1.30, 4.80 1.14, 20.00 1.16, 18.10 1.14, 20.70 1.15, 19.10 1.13, 22.60

256 119.94, 40 63.84, 39 58.22, 38 58.17, 37 57.01, 36 55.12, 35 52.71, 34
3.00, 0.00 1.64, 0.70 1.53, 1.90 1.57, 1.50 1.58, 1.40 1.57, 1.70 1.55, 2.10

a The first line is /2 followed by DF (number of degrees of freedom). Second line is /2�DF
followed by the confidence level. In all cases !min=10.

the corresponding confidence level17��for the function F!#!(;, 2L)�
!(;, L) as a function of the interpolation order n and the cut point Lmin ;
here we have used !min=10. (We tried also !min=20 and the results are
virtually unchanged.) A reasonable /2 is obtained when n�5 and
Lmin�64; a slightly better /2�DF is obtained by taking Lmin=128. Further
increases in n and�or Lmin do not improve the /2�DF.18 Our preferred fit is
therefore n=5, !min=10 and Lmin=128: we get

F!(x)=1+0.896737e&1�x+29.243141e&2�x&253.811947e&3�x

+2092.996892e&4�x&5334.794958e&5�x (4.1)

which is plotted in Fig. 1. This fit is reliable only in the interval where there
are data points contributing to it, namely x�xmaxr0.629781.

We remind the reader that our raw-data error bars on ! are over-
estimates, as a result of our use of the triangle inequality; therefore, the
/2 values reported in Table 3 are underestimates, and only their relative
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17 ``Confidence level'' is the probability that /2 would exceed the observed value, assuming that
the underlying statistical model is correct. An unusually low confidence level (e.g., less than
50) thus suggests that the underlying statistical model is incorrect. Here this may be due
to an inadequate interpolation Ansatz (too low n) or to corrections to scaling (too low !min

or Lmin). Another possible cause of unusually low confidence levels will be discussed in
Section 4.1.2.

18 Indeed, for Lmin=256 the /2�DF is worse than for Lmin=64, 128; it is, in fact, as bad as
for Lmin=32! We do not understand the reason for this behavior, which may be simply a
statistical fluctuation.
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Fig. 1. !(;, 2L)�!(;, L) versus !(;, L)�L. Symbols indicate L=32 (+), 64 (_), 128 (g),
256 (h), 512 (m). Error bars are one standard deviation. Curve is a fifth-order fit in (2.22),
with !min=10 and Lmin=128.

magnitudes can be considered to be reliable. The absolute quality of the fit
is, therefore, not as good as it looks. This will be further discussed below
in connection with /stagg (Section 4.1.2).

We can make a crude estimate of the universal value x* defined by
F!(x*)=2 [cf. (2.29)]. On the one hand, F!(xmax)=1.987350, so
x*>xmaxr0.629781. On the other hand, F $!(xmax)=3.080022, so if we
extrapolate linearly for x�xmax , we get x*=0.633888. This is not far from
the value x*=0.633983 obtained by taking (4.1) seriously even for
x>xmax . So it is a fair guess that x*r0.633888.19

In Fig. 2(a) we plot the deviations from our preferred fit together with
their error bars. The points with L=32 show weak (<0.01) but apparently
statistically significant deviations, of positive sign, in the interval 0.52�x�

0.625: see the blow-up of this region in Fig. 2(b).20 It is a reasonable guess
that these deviations arise from systematic corrections to scaling. However,
a careful test of this hypothesis would require higher statistics and more
densely spaced points; in addition, it would be useful to obtain data with
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19 After completion of this work, Salas and Sokal(34) obtained x*=0.63457\0.00033 by high-
precision simulation of this model at ;=�.

20 The L=32 point at xr0.633 lies outside the range of x covered by the fit (xmaxr0.630
when Lmin=128), so the negative deviation exhibited by this point may not be meaningful.
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Fig. 2. Deviation of points from fit to F! with s=2, n=5, !min=10 and Lmin=128. Symbols
indicate L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m). Error bars are one standard devia-
tion. Curves near zero indicate statistical error bars (\ one standard deviation) on the func-
tion F!(x). Plot (a) shows all points; plot (b) is a blow-up showing the L=32 points at
x�0.50.
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extremely high statistics (t108 sweeps) on smaller lattices than we have
bothered to use here (L=16 and even L=8), in order to observe a
stronger correction-to-scaling ``signal.'' The points with L�64 do not seem
to show any systematic deviations from the fit. Because we observe statisti-
cally significant corrections to scaling on only one lattice size, we are
unable to make any firm statement about the L-dependence of the correc-
tion-to-scaling term (which we expect to be of the form L&2, where 2>0
is a correction-to-scaling exponent). All we can say is that 2 is not too
small, since otherwise the correction to scaling would be observable also on
the L=64 lattice. But we are unable to say whether, for example, 2r1 or
2r2. Let us remark that Salas and Sokal(34) have recently predicted, on
the basis of the height representation of the zero-temperature model, (30�34)

that 2=2 (at least when ;=�).
We now compute the extrapolated values !� , using the function F!

given by our preferred fit as well as by several alternative fits that use more
or less stringent choices of Lmin . (In all cases we take n=5; the results for
n=6 or n=7 differ in almost all cases by <0.4 standard deviations.) The
statistical error bars on !� are computed by an auxiliary Monte Carlo pro-
cess using ``fake data sets,'' as described in Section 2.2, and include errors
of types (i)+(ii)+(iii). In particular, the correlations between the extrap-
olated values !� from different lattice sizes at the same ; (though not those
at different ; values) are taken account of in this computation. For each ;
we compute the weighted average (2.23) of the various estimates !� , along
with the statistical error bar (2.24) and the R value (2.25). These are reported
in Table 4. The statistical errors on !� are of order 10 (resp. 20, 30, 50)
at !�r1000 (resp. 2000, 5000, 10000). These extrapolated values from
different lattice sizes at the same ; are found to be consistent within
statistical errors: only two of the 42 ; values has an R value too large at
the 50 level; and summing all ; values we have � R=43.45 (75 DF, level
=99.90). This unusually low chi-squared is probably due, at least in part,
to our overestimation of the raw-data error bars on !L , which leads to an
overestimation of the error bars on !� .

The discrepancies between the extrapolations with Lmin=64, 128, 256
are in almost all cases less than half the quoted statistical error.21 We are
thus reasonably confident that we have obtained quantitative control over
the systematic errors due to corrections to scaling, and that their effect can
be at most to double the quoted statistical errors.
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21 On the other hand, the extrapolations with Lmin=32 frequently deviate from our preferred
Lmin=128 extrapolation by as much asr1_. These deviations are probably a correction-to-
scaling effect on the borderline of statistical significance.



Table 4. Estimated Infinite-Volume Correlation Lengths !� and
Staggered Susceptibilities /stagg, � as a Function of ;,

from Extrapolations Using Various Lmin
a

; Lmin !� R for !� /stagg, � R for /stagg, �

2.50 32 13.30 (0.03) 0.45 (3 DF, 93.00) 200.85 (0.31) 2.14 (3 DF, 54.40)

2.50 64 13.31 (0.04) 0.27 (2 DF, 87.40) 201.13 (0.39) 0.84 (2 DF, 65.90)

2.50 128 13.32 (0.13) 0.27 (1 DF, 60.20) 201.51 (0.09) 0.09 (1 DF, 76.60)

2.50 256 13.10 (0.42) 0.00 (0 DF, 100.00) 201.34 (0.80) 0.00 (0 DF, 100.00)

2.60 32 15.99 (0.08) 0.32 (2 DF, 85.30) 272.17 (0.69) 1.54 (2 DF, 46.30)

2.60 64 16.00 (0.08) 0.31 (2 DF, 85.80) 272.22 (0.70) 1.38 (2 DF, 50.30)

2.60 128 16.00 (0.12) 0.31 (1 DF, 57.70) 272.54 (0.79) 0.66 (1 DF, 41.70)

2.60 256 16.18 (0.36) 0.00 (0 DF, 100.00) 273.13 (1.10) 0.00 (0 DF, 100.00)

2.70 32 19.29 (0.05) 0.43 (3 DF, 93.30) 369.78 (0.69) 0.73 (3 DF, 86.60)

2.70 64 19.29 (0.06) 0.27 (2 DF, 87.60) 369.51 (0.75) 0.13 (2 DF, 93.70)

2.70 128 19.27 (0.12) 0.22 (1 DF, 63.80) 369.28 (1.09) 0.05 (1 DF, 83.00)

2.70 256 19.13 (0.33) 0.00 (0 DF, 100.00) 369.05 (1.51) 0.00 (0 DF, 100.00)

2.80 32 23.27 (0.09) 0.91 (3 DF, 82.20) 504.73 (0.92) 1.94 (3 DF, 58.50)

2.80 64 23.28 (0.09) 1.00 (3 DF, 80.00) 504.74 (0.91) 1.97 (3 DF, 57.80)

2.80 128 23.29 (0.12) 0.86 (2 DF, 65.20) 504.80 (0.98) 1.99 (2 DF, 37.00)

2.80 256 23.13 (0.27) 0.36 (1 DF, 55.10) 504.68 (1.07) 1.95 (1 DF, 16.30)

2.90 32 28.11 (0.11) 1.29 (3 DF, 73.20) 690.90 (1.31) 3.05 (3 DF, 38.40)

2.90 64 28.13 (0.12) 1.34 (3 DF, 72.00) 690.94 (1.33) 3.32 (3 DF, 34.40)

2.90 128 28.14 (0.14) 0.94 (2 DF, 62.60) 691.27 (1.40) 1.24 (2 DF, 53.90)

2.90 256 28.02 (0.24) 0.59 (1 DF, 44.20) 691.04 (1.51) 0.99 (1 DF, 32.00)

2.95 32 30.84 (0.18) 0.00 (0 DF, 100.00) 804.48 (4.06) 0.00 (0 DF, 100.00)

2.95 64 30.87 (0.19) 0.00 (0 DF, 100.00) 804.91 (4.20) 0.00 (0 DF, 100.00)

2.95 128 30.84 (0.20) 0.00 (0 DF, 100.00) 804.34 (4.35) 0.00 (0 DF, 100.00)

3.00 32 34.19 (0.10) 2.86 (4 DF, 58.10) 952.35 (1.70) 3.81 (4 DF, 43.20)

3.00 64 34.23 (0.11) 2.89 (3 DF, 41.00) 952.09 (1.80) 3.45 (3 DF, 32.80)

3.00 128 34.16 (0.16) 2.72 (2 DF, 25.70) 951.17 (1.93) 2.53 (2 DF, 28.30)

3.00 256 34.11 (0.23) 2.51 (1 DF, 11.30) 950.81 (2.12) 2.08 (1 DF, 14.90)

3.10 32 41.56 (0.17) 1.39 (3 DF, 70.80) 1319.45 (3.44) 3.11 (3 DF, 37.50)

3.10 64 41.59 (0.17) 1.23 (3 DF, 74.60) 1319.40 (3.43) 3.36 (3 DF, 34.00)

3.10 128 41.57 (0.18) 1.46 (2 DF, 48.10) 1318.96 (3.57) 4.82 (2 DF, 9.00)

3.10 256 41.77 (0.25) 0.01 (1 DF, 92.50) 1322.89 (4.06) 0.48 (1 DF, 49.00)

3.20 32 50.63 (0.16) 5.25 (4 DF, 26.20) 1831.78 (4.49) 5.95 (4 DF, 20.30)

3.20 64 50.81 (0.17) 0.60 (3 DF, 89.70) 1834.33 (4.75) 1.35 (3 DF, 71.70)

3.20 128 50.70 (0.22) 0.23 (2 DF, 89.20) 1831.27 (5.25) 0.16 (2 DF, 92.20)

3.20 256 50.72 (0.27) 0.17 (1 DF, 68.30) 1831.56 (6.16) 0.07 (1 DF, 79.50)

a Error bars are one standard deviation (statistical errors only). All extrapolations use n=5
for ! and n=6 for /stagg . R indicates the residual sum-of-squares (2.25) for combining
estimates from different L at the same ;; the number of degrees of freedom (DF) and the
confidence level are indicated. Our preferred fit is shown in italics; a more conservative good
fit is shown in sans-serif; bad fits are shown in roman.
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Table 4. (Continued )

; Lmin !� R for !� /stagg, � R for /stagg, �

3.30 32 61.96 (0.22) 0.64 (3 DF, 88.80) 2556.28 (5.94) 0.91 (3 DF, 82.30)

3.30 64 62.01 (0.22) 0.95 (3 DF, 81.40) 2556.71 (5.95) 1.15 (3 DF, 76.50)

3.30 128 61.98 (0.23) 0.60 (2 DF, 74.10) 2556.23 (6.16) 0.69 (2 DF, 70.70)

3.30 256 61.89 (0.27) 0.10 (1 DF, 75.80) 2554.73 (6.52) 0.06 (1 DF, 79.90)

3.40 32 75.63 (0.26) 0.05 (3 DF, 99.70) 3574.64 (8.59) 0.29 (3 DF, 96.20)

3.40 64 75.68 (0.26) 0.04 (3 DF, 99.80) 3575.04 (8.50) 0.24 (3 DF, 97.00)

3.40 128 75.64 (0.27) 0.01 (2 DF, 99.60) 3573.43 (8.99) 0.02 (2 DF, 99.10)

3.40 256 75.60 (0.30) 0.11 (1 DF, 73.50) 3571.90 (9.54) 0.04 (1 DF, 84.60)

3.45 32 83.56 (0.76) 0.00 (0 DF, 100.00) 4220.00 (47.16) 0.00 (0 DF, 100.00)

3.45 64 83.75 (0.76) 0.00 (0 DF, 100.00) 4223.68 (47.21) 0.00 (0 DF, 100.00)

3.45 128 83.64 (0.78) 0.00 (0 DF, 100.00) 4215.80 (47.28) 0.00 (0 DF, 100.00)

3.50 32 92.94 (0.25) 4.88 (5 DF, 43.10) 5035.19 (9.43) 6.50 (5 DF, 26.00)

3.50 64 93.05 (0.26) 1.45 (4 DF, 83.50) 5034.94 (9.86) 1.85 (4 DF, 76.30)

3.50 128 93.02 (0.29) 0.68 (3 DF, 87.90) 5030.37 (10.68) 0.37 (3 DF, 94.70)

3.50 256 92.90 (0.34) 0.63 (2 DF, 72.80) 5025.27 (12.41) 0.01 (2 DF, 99.30)

3.60 32 113.85 (0.41) 1.82 (3 DF, 61.00) 7054.43 (22.62) 2.11 (3 DF, 54.90)

3.60 64 113.96 (0.42) 1.27 (3 DF, 73.70) 7058.81 (23.51) 1.34 (3 DF, 72.00)

3.60 128 113.81 (0.46) 0.08 (2 DF, 96.00) 7053.38 (25.92) 0.02 (2 DF, 98.90)

3.60 256 113.70 (0.52) 0.01 (1 DF, 91.50) 7048.81 (30.78) 0.00 (1 DF, 97.90)

3.65 32 125.80 (0.55) 0.00 (0 DF, 100.00) 8350.93 (30.21) 0.00 (0 DF, 100.00)

3.65 64 125.92 (0.57) 0.00 (0 DF, 100.00) 8354.88 (31.24) 0.00 (0 DF, 100.00)

3.65 128 125.78 (0.63) 0.00 (0 DF, 100.00) 8338.35 (34.51) 0.00 (0 DF, 100.00)

3.65 256 125.66 (0.70) 0.00 (0 DF, 100.00) 8341.72 (40.35) 0.00 (0 DF, 100.00)

3.70 32 139.75 (0.58) 1.07 (3 DF, 78.40) 9952.36 (34.98) 1.32 (3 DF, 72.50)

3.70 64 139.91 (0.59) 1.44 (3 DF, 69.70) 9952.21 (35.13) 1.69 (3 DF, 63.80)

3.70 128 139.76 (0.67) 0.64 (2 DF, 72.50) 9940.95 (38.57) 0.82 (2 DF, 66.50)

3.70 256 139.51 (0.77) 0.05 (1 DF, 82.70) 9927.15 (45.42) 0.12 (1 DF, 72.40)

3.80 32 171.68 (0.70) 4.96 (3 DF, 17.50) 14021.81 (49.40) 5.11 (3 DF, 16.40)

3.80 64 171.85 (0.73) 3.22 (3 DF, 35.90) 14009.84 (51.53) 3.37 (3 DF, 33.80)

3.80 128 171.59 (0.79) 0.18 (2 DF, 91.50) 13982.10 (54.81) 0.27 (2 DF, 67.40)

3.80 256 171.23 (0.90) 0.00 (1 DF, 97.60) 13953.90 (61.64) 0.03 (1 DF, 86.80)

3.90 32 211.00 (0.88) 0.98 (3 DF, 80.60) 19803.32 (77.69) 1.08 (3 DF, 78.30)

3.90 64 211.19 (0.91) 1.09 (3 DF, 78.00) 19790.24 (81.81) 1.26 (3 DF, 73.80)

3.90 128 210.98 (0.99) 1.30 (2 DF, 52.30) 19765.50 (87.33) 1.48 (2 DF, 47.80)

3.90 256 210.74 (1.13) 0.34 (1 DF, 55.90) 19737.60 (99.20) 0.34 (1 DF, 56.10)

3.95 32 237.95 (6.17) 0.00 (0 DF, 100.00) 24159.76 (969.01) 0.00 (0 DF, 100.00)

3.95 64 236.37 (5.97) 0.00 (0 DF, 100.00) 23848.23 (931.88) 0.00 (0 DF, 100.00)

3.95 128 235.80 (6.14) 0.00 (0 DF, 100.00) 23773.60 (954.62) 0.00 (0 DF, 100.00)

4.00 32 259.76 (0.92) 4.79 (5 DF, 44.20) 27975.61 (95.23) 5.05 (5 DF, 41.00)

4.00 64 260.24 (0.96) 1.09 (4 DF, 89.70) 27993.91 (103.35) 1.27 (4 DF, 86.60)

4.00 128 259.98 (1.07) 0.92 (3 DF, 82.10) 27970.00 (116.37) 1.12 (3 DF, 77.20)

4.00 256 259.73 (1.30) 0.40 (2 DF, 81.70) 27941.80 (143.30) 0.58 (2 DF, 74.80)
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Table 4. (Continued )

; Lmin !� R for !� /stagg, � R for /stagg, �

4.10 32 317.61 (1.78) 0.61 (2 DF, 73.60) 39274.02 (257.27) 0.61 (2 DF, 73.70)

4.10 64 318.18 (1.82) 0.28 (2 DF, 87.00) 39291.96 (262.01) 0.30 (2 DF, 86.00)

4.10 128 317.70 (1.97) 0.30 (2 DF, 86.00) 39219.30 (273.74) 0.34 (2 DF, 84.40)

4.10 256 317.47 (2.39) 0.16 (1 DF, 69.30) 39222.30 (325.32) 0.18 (1 DF, 67.50)

4.15 32 355.81 (3.47) 0.00 (0 DF, 100.00) 47353.74 (572.90) 0.00 (0 DF, 100.00)

4.15 64 356.61 (3.49) 0.00 (0 DF, 100.00) 47389.86 (581.04) 0.00 (0 DF, 100.00)

4.15 128 356.11 (3.58) 0.00 (0 DF, 100.00) 47294.50 (588.26) 0.00 (0 DF, 100.00)

4.15 256 355.96 (3.93) 0.00 (0 DF, 100.00) 47319.30 (627.61) 0.00 (0 DF, 100.00)

4.20 32 394.98 (1.92) 1.43 (3 DF, 69.80) 56299.87 (272.76) 2.48 (3 DF, 47.90)

4.20 64 395.38 (1.96) 1.44 (3 DF, 69.70) 56273.48 (284.20) 2.48 (3 DF, 47.90)

4.20 128 394.85 (2.12) 1.23 (3 DF, 74.50) 56161.10 (300.19) 2.26 (3 DF, 52.10)

4.20 256 394.00 (2.47) 1.71 (2 DF, 42.60) 56045.30 (332.62) 3.02 (2 DF, 22.10)

4.30 32 489.45 (3.01) 1.82 (2 DF, 40.20) 80567.72 (664.23) 1.82 (2 DF, 40.30)

4.30 64 489.42 (3.14) 0.99 (2 DF, 61.10) 80425.79 (687.24) 1.03 (2 DF, 59.70)

4.30 128 488.45 (3.56) 1.00 (2 DF, 60.80) 80248.30 (747.13) 1.05 (2 DF, 59.00)

4.30 256 488.41 (4.61) 0.94 (1 DF, 33.20) 80379.20 (962.86) 1.00 (1 DF, 31.70)

4.40 32 608.66 (4.77) 0.50 (2 DF, 77.90) 116045.88 (1258.07) 0.50 (2 DF, 77.90)

4.40 64 607.55 (4.90) 0.68 (2 DF, 71.20) 115438.34 (1297.88) 0.69 (2 DF, 70.80)

4.40 128 606.22 (5.45) 0.75 (2 DF, 68.70) 115121.00 (1390.11) 0.76 (2 DF, 68.40)

4.40 256 607.38 (7.01) 0.13 (1 DF, 71.40) 115580.00 (1724.71) 0.13 (1 DF, 71.50)

4.50 32 743.91 (4.99) 17.63 (5 DF, 0.30) 161644.96 (1441.16) 18.91 (5 DF, 0.20)

4.50 64 741.86 (5.25) 11.36 (4 DF, 2.30) 160749.98 (1524.23) 12.20 (4 DF, 1.60)

4.50 128 740.18 (5.90) 8.57 (3 DF, 3.60) 160184.00 (1641.99) 9.19 (3 DF, 2.70)

4.50 256 737.83 (7.34) 6.81 (2 DF, 3.30) 159681.00 (1957.27) 7.34 (2 DF, 2.50)

4.60 32 940.15 (9.85) 2.23 (2 DF, 32.80) 239226.36 (3809.46) 2.27 (2 DF, 32.20)

4.60 64 932.11 (10.39) 1.00 (2 DF, 60.60) 235469.71 (3977.98) 1.02 (2 DF, 60.20)

4.60 128 929.18 (11.49) 1.01 (2 DF, 60.40) 234461.00 (4288.18) 1.02 (2 DF, 60.10)

4.60 256 929.73 (14.09) 0.93 (1 DF, 33.60) 235038.00 (5147.64) 0.95 (1 DF, 33.10)

4.65 32 1049.65 (12.82) 2.08 (1 DF, 14.90) 287837.94 (5463.27) 2.16 (1 DF, 14.10)

4.65 64 1036.57 (13.29) 3.93 (1 DF, 4.80) 281335.40 (5552.70) 4.10 (1 DF, 4.30)

4.65 128 1033.49 (14.50) 4.08 (1 DF, 4.30) 280163.00 (5953.38) 4.24 (1 DF, 3.90)

4.65 256 1034.53 (17.16) 4.14 (1 DF, 4.20) 281019.00 (6811.95) 4.32 (1 DF, 3.80)

4.70 32 1149.03 (11.81) 0.39 (3 DF, 94.30) 334974.41 (5138.61) 0.40 (3 DF, 94.00)

4.70 64 1140.40 (12.25) 0.16 (3 DF, 98.40) 330406.55 (5250.77) 0.17 (3 DF, 98.30)

4.70 128 1137.34 (13.39) 0.20 (3 DF, 97.70) 329280.00 (5587.85) 0.21 (3 DF, 97.60)

4.70 256 1138.49 (16.23) 0.20 (2 DF, 90.50) 330203.00 (6544.22) 0.21 (2 DF, 90.10)

4.80 32 1435.78 (15.18) 3.99 (3 DF, 26.30) 485576.51 (7655.78) 3.86 (3 DF, 27.70)

4.80 64 1423.46 (16.09) 2.25 (3 DF, 52.20) 478214.99 (8078.91) 2.09 (3 DF, 55.30)

4.80 128 1419.96 (17.36) 2.00 (3 DF, 57.30) 476453.00 (8528.54) 1.87 (3 DF, 60.00)

4.80 256 1418.50 (20.45) 0.45 (2 DF, 79.90) 476657.00 (9743.68) 0.45 (2 DF, 80.00)

4.90 32 1779.47 (24.92) 3.54 (3 DF, 31.60) 693347.95 (15088.08) 3.66 (3 DF, 30.10)

4.90 64 1759.03 (25.37) 3.76 (3 DF, 28.90) 679244.94 (15148.94) 3.90 (3 DF, 27.20)

4.90 128 1755.04 (26.90) 3.83 (3 DF, 28.10) 677221.00 (15901.70) 3.97 (3 DF, 26.40)

4.90 256 1753.30 (30.59) 3.72 (2 DF, 15.50) 677150.00 (17675.40) 3.86 (2 DF, 14.50)
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Table 4. (Continued )

; Lmin !� R for !� /stagg, � R for /stagg, �

5.00 32 2218.69 (44.16) 10.43 (5 DF, 6.40) 1001133.00 (32465.03) 10.42 (5 DF, 6.40)

5.00 64 2198.02 (44.85) 4.62 (4 DF, 32.80) 986315.31 (32381.73) 4.75 (4 DF, 31.40)

5.00 128 2189.50 (47.16) 5.32 (3 DF, 15.00) 980853.00 (33603.90) 5.53 (3 DF, 13.70)

5.00 256 2202.41 (53.21) 2.84 (2 DF, 24.20) 991980.00 (37473.90) 2.95 (2 DF, 22.90)

5.10 32 2670.51 (51.77) 0.02 (3 DF, 99.90) 1371476.00 (42469.89) 0.02 (3 DF, 99.90)

5.10 64 2627.87 (51.80) 0.23 (3 DF, 97.30) 1332282.00 (42007.23) 0.21 (3 DF, 97.60)

5.10 128 2618.49 (54.00) 0.14 (3 DF, 98.70) 1325547.00 (43166.40) 0.14 (3 DF, 98.70)

5.10 256 2619.75 (60.40) 0.10 (2 DF, 94.90) 1328528.00 (47282.20) 0.10 (2 DF, 94.90)

5.20 32 3488.77 (96.81) 0.79 (3 DF, 85.20) 2133709.00 (96738.46) 0.77 (3 DF, 85.60)

5.20 64 3431.88 (100.37) 0.64 (3 DF, 88.80) 2070752.00 (98793.74) 0.59 (3 DF, 89.90)

5.20 128 3416.96 (99.80) 0.54 (3 DF, 91.00) 2058294.00 (97987.50) 0.52 (3 DF, 91.40)

5.20 256 3419.80 (109.80) 0.50 (2 DF, 78.00) 2064205.00 (106605.00) 0.49 (2 DF, 78.20)

5.30 32 4134.51 (138.26) 0.72 (2 DF, 69.90) 2835978.00 (156936.69) 0.69 (2 DF, 70.70)

5.30 64 4061.19 (142.43) 0.50 (2 DF, 77.90) 2747493.00 (159307.94) 0.48 (2 DF, 78.60)

5.30 128 4038.28 (142.59) 0.47 (2 DF, 79.00) 2725035.00 (158160.00) 0.45 (2 DF, 79.70)

5.30 256 4057.82 (156.95) 0.54 (2 DF, 76.40) 2749120.00 (173702.00) 0.52 (2 DF, 77.10)

5.40 32 5039.09 (148.02) 0.28 (3 DF, 96.40) 3955726.00 (190762.23) 0.27 (3 DF, 96.60)

5.40 64 4953.59 (148.53) 0.71 (3 DF, 87.10) 3831850.00 (188716.09) 0.66 (3 DF, 88.20)

5.40 128 4928.06 (152.69) 0.60 (3 DF, 89.70) 3804126.00 (192397.00) 0.57 (3 DF, 90.40)

5.40 256 4941.46 (163.20) 1.01 (3 DF, 79.80) 3823421.00 (204251.00) 0.92 (3 DF, 82.10)

5.50 32 6377.29 (217.63) 1.99 (2 DF, 37.00) 5821262.00 (327977.26) 1.99 (2 DF, 36.90)

5.50 64 6223.22 (221.23) 2.19 (2 DF, 33.40) 5574691.00 (326750.54) 2.15 (2 DF, 34.20)

5.50 128 6203.03 (224.08) 1.96 (2 DF, 37.60) 5553237.00 (330812.00) 1.92 (2 DF, 38.30)

5.50 256 6197.48 (238.44) 2.28 (2 DF, 31.90) 5546998.00 (347228.00) 2.20 (2 DF, 33.30)

5.60 32 7970.66 (301.47) 0.04 (2 DF, 97.80) 8498373.00 (534485.16) 0.04 (2 DF, 98.00)

5.60 64 7801.45 (309.62) 0.02 (2 DF, 99.00) 8180645.00 (538772.90) 0.01 (2 DF, 99.30)

5.60 128 7760.02 (311.34) 0.01 (2 DF, 99.60) 8116724.00 (540193.00) 0.01 (2 DF, 99.70)

5.60 256 7790.68 (326.89) 0.05 (2 DF, 97.40) 8178031.00 (561400.00) 0.04 (2 DF, 97.80)

5.70 32 9664.89 (456.80) 0.23 (2 DF, 89.20) 11718104.00 (928104.64) 0.22 (2 DF, 89.90)

5.70 64 9531.97 (469.77) 0.02 (2 DF, 98.90) 11427243.00 (940367.35) 0.02 (2 DF, 99.00)

5.70 128 9460.68 (459.20) 0.04 (2 DF, 97.90) 11295711.00 (915422.00) 0.04 (2 DF, 98.10)

5.70 256 9548.22 (514.52) 0.04 (2 DF, 97.80) 11476466.00 (1029147.00) 0.04 (2 DF, 98.00)

5.80 32 12659.85 (1409.69) 0.00 (0 DF, 100.00) 18383870.00 (3478048.00) 0.00 (0 DF, 100.00)

5.80 64 12557.84 (1515.32) 0.00 (0 DF, 100.00) 18099541.00 (3740026.00) 0.00 (0 DF, 100.00)

5.80 128 12416.40 (1475.70) 0.00 (0 DF, 100.00) 17772288.00 (3613560.00) 0.00 (0 DF, 100.00)

5.80 256 12649.50 (1593.68) 0.00 (0 DF, 100.00) 18354042.00 (3979249.00) 0.00 (0 DF, 100.00)

5.90 32 14796.02 (2144.26) 0.00 (0 DF, 100.00) 23832311.00 (6025802.00) 0.00 (0 DF, 100.00)

5.90 64 14844.78 (2373.04) 0.00 (0 DF, 100.00) 23910024.00 (6775206.00) 0.00 (0 DF, 100.00)

5.90 128 14634.30 (2366.26) 0.00 (0 DF, 100.00) 23371893.00 (6702087.00) 0.00 (0 DF, 100.00)

5.90 256 15023.40 (2645.59) 0.00 (0 DF, 100.00) 24447729.00 (7839348.00) 0.00 (0 DF, 100.00)

6.00 32 25502.30 (7489.41) 0.00 (0 DF, 100.00) 58916945.00 (37012150.00) 0.00 (0 DF, 100.00)

6.00 64 25937.75 (8904.71) 0.00 (0 DF, 100.00) 60454213.00 (45821760.00) 0.00 (0 DF, 100.00)

6.00 128 25480.80 (8389.04) 0.00 (0 DF, 100.00) 58758630.00 (41692067.00) 0.00 (0 DF, 100.00)

6.00 256 26391.60 (�) 0.00 (0 DF, 100.00) 62389831.00 (�) 0.00 (0 DF, 100.00)
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Table 5. /2 for the Fit (2.22) of /stagg(;, 2L)�/stagg(;, L) versus !(;, L)�La

Lmin n=3 n=4 n=5 n=6 n=7 n=8 n=9

32 1738.06, 94 288.25, 93 277.13, 92 244.18, 91 243.54, 90 236.75, 89 228.29, 88
18.49, 0.00 3.10, 0.00 3.01, 0.00 2.68, 0.00 2.71, 0.00 2.66, 0.00 2.59, 0.00

64 932.48, 86 196.30, 85 193.24, 84 178.47, 83 177.49, 82 171.16, 81 164.95, 80
10.84, 0.00 2.31, 0.00 2.30, 0.00 2.15, 0.00 2.16, 0.00 2.11, 0.00 2.06, 0.00

128 692.28, 68 142.15, 67 138.73, 66 131.45, 65 128.69, 64 127.09, 63 123.49, 62
10.18, 0.00 2.12, 0.00 2.10, 0.00 2.02, 0.00 2.01, 0.00 2.02, 0.00 1.99, 0.00

256 387.08, 40 106.87, 39 106.47, 38 101.90, 37 100.23, 36 95.69, 35 90.82, 34
9.68, 0.00 2.74, 0.00 2.80, 0.00 2.75, 0.00 2.78, 0.00 2.73, 0.00 2.67, 0.00

a The first line is /2 followed by DF (number of degrees of freedom). Second line is /2�DF
followed by the confidence level. In all cases !min=10.

4.1.2. Staggered Susceptibility. Next we carry out an
analogous analysis for the staggered susceptibility /stagg . Note that for this
observable our raw-data error bars are reliable, so the absolute /2 values
can be taken seriously.

In Table 5 we report the quality of the fit for the function F/stagg
#

/stagg(;, 2L)�/stagg(;, L) as a functions of the interpolation order n and the
cut point Lmin ; here we have used !min=10. (We tried also !min=20 and
the results are virtually unchanged.) The /2�DF is smallest when n�6 and
Lmin�128.22 However, this /2�DF is r2, rather than the r1 that it ought
to be; and as a result, the confidence levels are extremely low (of order
10&6). We do not understand this behavior, but we can make a few obser-
vations:

(a) Clearly, the explanation cannot be either an inadequate fitting
function or corrections to scaling, because increasing n and�or Lmin and�or
!min does not improve the fit.

(b) One possible explanation might be that our raw-data error bars
are underestimated; but we tried various alternative statistical methods,
such as breaking up long runs into sub-runs, and all gave compatible error
bars. So we do not think that this is the problem.

(c) It is worth noting that nearly all the points with poor /2 come
from the region of large x, particularly x-0.59. Indeed, if we look
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separately at the contributions to /2 (using the fit with n=6, !min=10,
Lmin=128) coming from the intervals x�0.53, 0.53<x<0.59 and
x�0.59, we find that the first interval contains 29 points which together
contribute 24.31 to the /2 (/2�DF=0.84, level=71.40), the second inter-
val contains 10 points which together contribute 16.65 to the /2 (/2�DF=
1.67, level=8.20), while the third interval contains 32 points which
together contribute 90.49 to the /2 (/2�DF=2.83, level=1.7_10&7).

(d) This behavior can also be seen in Fig. 3, where we show the
deviations from the fit n=6, !min=10, Lmin=128 together with their error
bars. The points with L=32 show weak (<0.02) but statistically signifi-
cant deviations, of positive sign, in the interval 0.53�x�0.625: see the
blow-up of this region in Fig. 3(b).23 However, for L�64 the corrections
to scaling have become completely invisible. On the other hand, for
x>0.58 [see the enlarged view in Fig. 3(c)] we see that several points
deviate from the fitting curve by 2�4 standard deviations; but there does
not seem to be any systematic trend to these deviations, nor do the
absolute deviations seem to be larger for smaller L. So, once again, it is
unlikely that these deviations are caused by corrections to scaling, or
indeed by any process that causes a systematic bias.

(e) One possible cause of the unusually high /2 is the following:
We treated the points in the fit��which of course correspond to pairs
(;, L)�(;, 2L)��as statistically independent; but this is not quite right, as
the same raw-data point (;, 2L) can contribute to two pairs, namely
(;, L)�(;, 2L) and (;, 2L)�(;, 4L), being in the numerator of the first and
in the denominator of the second. As a result, these pairs of pairs are
significantly anticorrelated��one would expect a correlation coefficient of
r&1�2, if all three raw-data points have roughly the same relative
error��and they will thus tend to deviate from each other by more than
would have been predicted from independent fluctuations with the given
error bars. Furthermore, when !(;, L)�L is close to x*, !(;, 2L)�2L is in
turn not much smaller than !(;, L)�L, so this anticorrelation acts on pairs
of points having relatively nearby values of x. This could explain why the
large contributions to /2 come almost exclusively from the region x-0.59,
and why they are apparently completely random. Unfortunately, it seemed
unfeasible for us to invert the large matrices (of order r70) that would be
needed to take proper account of these correlations. Suffice it to say that
if this is the correct explanation, then the observed large /2 is simply
spurious, and the fit is in reality good after all! Moreover, in this case the
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Fig. 3. Deviation of points from fit to F/stagg
with s=2, n=6, !min=10 and Lmin=128. Sym-

bols indicate L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m). Error bars are one standard
deviation. Curves near zero indicate statistical error bars (\ one standard deviation) on the
function F/stagg

(x). Plot (a) shows all points; plot (b) is a blow-up showing the L=32 points

at x�0.50; plot (c) is a blow-up showing all points with x�0.58.
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Fig. 3. (Continued )

error bars on the extrapolated values !� and /stagg, � will be correct, as the
method of ``fake data sets'' does take proper account of the aforementioned
correlations.

Modulo these caveats, therefore, we take as our preferred fit the one
with n=6, !min=10 and Lmin=128: we get

F/stagg
(x)=1+2.234450e&1�x+80.120833e&2�x&966.050470e&3�x

+10728.802555e&4�x&49077.175871e&5�x+73776.084137e&6�x

(4.2)

which is plotted in Fig. 4. This fit is reliable in the interval x�xmaxr

0.629781. Using the value x*r0.633888 derived from F! , we have

F/stagg
(x*)=3.172742=21.66573 (4.3)

if we extrapolate (4.2) linearly for x�xmax , or

F/stagg
(x*)=3.172345=21.66555 (4.4)

if we take (4.2) seriously also for x>xmax . Either way, this is in excellent
agreement with the prediction(32) #�&=5�3 [cf. (2.30)].
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Fig. 4. /stagg(;, 2L)�/stagg(;, L) versus !(;, L)�L. Symbols indicate L=32 (+), 64 (_),
128 (g), 256 (h), 512 (m). Error bars are one standard deviation. Curve is a sixth-order fit
in (2.22), with !min=10 and Lmin=128.

We can now compute the extrapolated values /stagg, � , using the func-
tions F! and F/stagg

given by our preferred fit as well as by several alter-
native fits that use more or less stringent choices of Lmin . (In all cases we
take n=5 for F! and n=6 for F/stagg

; the results for larger n differ in almost
all cases by <0.6 standard deviations.) The statistical error bars on
/stagg, � are computed as before by an auxiliary Monte Carlo process, and
include errors of types (i)+(ii)+(iii). For each ; we compute the weighted
average (2.23) of the various estimates /stagg, � along with the statistical
error bar (2.24) and the R value (2.25). These are reported in Table 4. The
statistical errors on /stagg, � are of order 20 (resp. 30, 50, 80) at
!�r1000 (resp. 2000, 5000, 10000), that is, about twice as big as those
on !� . These extrapolated values from different lattice sizes at the same ;
are found to be consistent within statistical errors: only two of the 42 ;
values has an R value too large at the 50 level; and summing all ; values
we have � R=50.41 (75 DF, level =98.70). We don't know why this
chi-squared is so small; it may be due in part to our overestimation of the
raw-data error bars on !L , which leads to an overestimation of the errors
of type (ii) on /stagg, � .
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The discrepancies between the extrapolations with Lmin=64, 128, 256
are again less than half the quoted statistical error in nearly all cases.24 We
are thus reasonably confident that we have obtained quantitative control
over the systematic errors due to corrections to scaling, and that their effect
can be at most to double the quoted statistical errors.

4.2. Analysis of Extrapolated Data

In this section we analyze the behavior as ; � � of the extrapolated
data for ! and /stagg . In all cases we use the preferred extrapolations,
namely the ones with !min=10, Lmin=128, and n=5 (resp. 6) for ! (resp.
/stagg).

4.2.1. Correlation Length. Our data are in clear agreement with
the prediction of a critical point at ;=�. The correlation length !� rises
roughly like e2;, and we initially thought that this was the exact asymptotic
behavior. However, at ;-3.4 (!� -75), !� begins to rise faster than this
(Fig. 5a), and this rise shows no sign of abating at least up to ;r5.9
(!�r15000). We therefore guessed a multiplicative logarithmic correction,
i.e., !�te2;; p for some power p>0: see Figs. 5b,c for p=1�2 and p=1,
respectively.

In order to distinguish between these scenarios, we need to make some
assumption on the form of the additive corrections to the leading
asymptotic behavior. Unfortunately we do not know how to carry out a
low-temperature expansion around the (critical) zero-temperature state;
but the simplest hypothesis is that there exists an expansion in powers
of e&;, which corresponds to a minimum energy cost of one unit for an
``overturned'' spin. That is, we expect

!�(;)=Ae2;; p[1+a1e&;+a2e&2;+ } } } ] (4.5)

If we accept this Ansatz, a value pr1 is clearly favored (Fig. 6). A fit to
the first two terms of (4.5) with p=1, using the data points with ;�2.95
(e&;�0.052), yields A=0.01814\0.00006 and Aa1=0.20051\0.00225
(hence a1r15) with /2=13.10 (35 DF, level =99.970).
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24 The extrapolations with Lmin=32 frequently deviate from our preferred Lmin=128
extrapolation by as much as r1.2_. These deviations are, once again, probably a correc-
tion-to-scaling effect on the borderline of statistical significance.
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Fig. 5. Infinite-volume correlation length !� divided by e2;; p for (a) p=0, (b) p=1�2,
(c) p=1. Error bars are one standard deviation.
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Fig. 5. (Continued )

Fig. 6. !��(e2;; p) with p=1, plotted versus e&;. Note the nearly linear behavior, in good
agreement with (4.5). Straight line is !��(e2;;)=0.01814+0.20051e&;, which is the least-
squares fit to the data with ;�2.95 (e&;�0.052).
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On the other hand, Chris Henley (private communication) has
suggested to us that the corrections to scaling might contain fractional
powers of e&;:

!�(;)=Ae2;; p[1+a1e&*1 ;+a2e&*2 ;+ } } } ] (4.6)

with *1<1. Since e&*1 ;
t!&*1 �2, such behavior would ordinarily arise from

a correction-to-scaling exponent 2=*1 �2; and our data for the finite-size-
scaling functions show no evidence of a correction-to-scaling exponent
anywhere near this small (see Section 4.1.1). Let us nevertheless consider
the Ansatz (4.6) open-mindedly and see whether it can accommodate p=0.
In Fig. 7a,b we plot !�(;)�e2; versus e&*; for *=1 and 0.5, respectively.
With *=1, the plot shows both strong curvature and a rather high slope
near the origin; for ;�4.50 (e&;�0.011) the data can be fit well by a
straight line with Ar0.110 and a1r&15. With *=0.5, the curvature and
slope are less radical; the data for ;�4.50 (e&0.5;�0.105) can be fit well
by a straight line with Ar0.122 and a1r&2.4. However, even this latter
plot is nowhere near as convincing as Fig. 6.

Finally, an anonymous referee has suggested to us that the corrections
to scaling might be in powers of 1�;:

!�(;)=Ae2;; p _1+
a1

;
+

a2

;2+ } } } & (4.7)

(see Section 7.1 for theoretical discussion). In Figs. 8a, b, c we plot
!�(;)�(e2;; p) versus 1�; for p=0, 1�2, 1. Clearly, our data��which lie in
the range 0.15�1�;�0.4��are so far from asymptotic that no conclusion
can be drawn. In particular, the plot for p=0 (resp. p=1) shows such a
large negative (resp. positive) slope at the smallest available value of 1�;
that the extrapolated intercept at 1�;=0 differs by nearly a factor of 2 from
the last data point; and the plot for p=1�2 shows a large third derivative
(i.e., abrupt change from parabolic to flat) at 1�;r0.2.

Let us note in passing that our data fit much less well the Ansatz
!�texp(c;}) used by some previous workers.(35, 10, 11) Indeed, a log�log
plot of log !� versus ; (Fig. 9) shows significant curvature: the apparent
exponent } varies from r1.69 at small ; to r1.38 at larger ;. (This
decrease is consistent with our conjecture that the true asymptotic value of
the exponent } is 1.) Moreover, as noted in the Introduction, we have been
unable to imagine any theoretical mechanism leading to !texp(c;}) with
}{1.
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Fig. 7. !��e2; plotted versus e&*;. (a) *=1. Straight line is !��e2;=0.1098&1.6574e&;,
which is the least-squares fit to the data with ;�4.50 (e&;�0.011). (b) *=0.5. Straight line
is !� �e2;=0.1225&0.2929e&0.5;, which is the least-squares fit to the data with ;�4.50
(e&0.5;�0.105).
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Fig. 8. !��(e2;; p) plotted versus 1�; for (a) p=0, (b) p=1�2, (c) p=1.
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Fig. 8. (Continued )

Fig. 9. Log�log plot of log !� versus ;. The indicated asymptotes are log !�=
0.55300;1.68785 at small ;, and log !�=0.82503;1.38387 at large ;.
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4.2.2. Staggered Susceptibility The staggered susceptibility is
consistent with the believed exact behavior(32) /stagg, �t!5�3

� , unmodified
by any further powers of ;. To test this behavior quantitatively, we need
to set error bars on the ratio /stagg, ��!5�3

� . Since unfortunately we do not
know the covariance between our estimates of !� and /stagg, � , the best we
can do is to use the triangle inequality to set an upper bound on the error
bar for the ratio; this upper bound is of course a gross overestimate of the
true error, since the estimates of !� and /stagg, � are presumably strongly
positively correlated. As a result, the error bars in all fits will be grossly
overestimated, and the /2 will be grossly underestimated; only the relative
values of /2�DF have any significance.

In Fig. 10 we plot /stagg, ��!5�3
� versus ; (note the very narrow vertical

scale); the error bars are those given by the triangle inequality, reduced by
a factor of 10 for visual clarity. We see that /stagg, ��!5�3

� varies slightly with
;, but appears to be tending to a constant r2.67 as ; � �.

If we fit /stagg, ��!5�3
� to the Ansatz A; p, the estimates of the power p

are extremely small, of order 0.02, and statistically consistent with zero.
This confirms our belief that there are no additional powers of ; in the
ratio /stagg, ��!5�3

� . If we impose p=0 and fit /stagg, ��!5�3
� to a constant A,

we obtain A=2.657\0.051 (/2=0.007, 13 DF, level >99.90) using the

Fig. 10. /stagg, ��!5�3
� plotted versus ;. Error bars are those given by the triangle inequality,

reduced by a factor of 10 for visual clarity.
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data from ;�4.70. Of course, the error bar on A here is a gross over-
estimate, and the /2 value is a gross underestimate.

We can, of course, investigate directly the behavior of /stagg, � as a
function of ;, without reference to !. This approach has the advantage that
the error bars on /stagg, � are reliable. In Fig. 11 we plot /stagg, � �(e(10�3) ;;q)
versus ; for q=0, 5

6 , 5
3 . The behavior is qualitatively similar to that observed

in Fig. 5 for !, although the variation is somewhat sharper. If we try again
the Ansatz

/stagg, �(;)=Be(10�3) ;;q[1+b1 e&;+b2 e&2;+ } } } ] (4.8)

a value qr5�3 is favored (Fig. 12). The curvature is greater than in the
corresponding plot for !, hut the linearity is still reasonable for e&;�0.03.
A fit to (4.8) with q=5�3, using the data points with ;�3.60 (e&;�
0.0273), yields B=0.00329\0.00003 and Bb1=0.06661\0.00124 (hence
b1r20) with /2=17.55 (27 DF, level=920). We omit the plots based on
a fractional-power additive correction to scaling, which are similar to those
shown for the correlation length (Fig. 7).

4.3. Behavior of the Energy

On theoretical grounds we expect that the infinite-volume energy per
site has a low-temperature expansion of the form

E�(;)=c1e&;+c2 e&2;+ } } } (4.9)

Unfortunately we do not have access to E� , as we have made no attempt
to extrapolate the energies (which are short-distance quantities) to infinite
volume. But examination of the finite-volume energies EL indicates that for
L�512 (resp. 1024) the remaining L-dependence is less than r2_10&4

(resp. 5_10&5); so the energies appear to have almost reached their
infinite-volume limits. In Fig. 13 we plot E�e&; versus e&;, using different
symbols to represent different lattice sizes. A fit to the L=1024 points with
;�5.00 (e&;�0.0067) yields c1=0.21777\0.00003 and c2=1.65303\
0.00664 (/2=5.09, 8 DF, level=750). The L=1536 points are also com-
patible with this fit, and the L=512 points differ only slightly from it. This
provides good support for the Ansatz (4.9).

We would like to make a warning concerning the use of reweighting
methods(53�56)25 in which Monte Carlo runs at one temperature ; are
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25 These methods are sometimes called ``histogram'' (or ``multiple-histogram'') methods, but in
fact the reweighting is most conveniently carried out without forming histograms!
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Fig. 11. Infinite-volume staggered susceptibility /stagg, � divided by e(10�3);;q for (a) q=0,
(b) q=5�6, (c) q=5�3. Error bars are one standard deviation.
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Fig. 11. (Continued )

Fig. 12. /stagg, ��(e(10�3);;q) with q=5�3, plotted versus e&;. The behavior is reasonably
linear for e&;�0.03, in good agreement with (4.8). Straight line is /stagg, ��(e(10�3);;5�3)=
0.00329+0.06661e&;, which is the least-squares fit to the data with ;�3.60.
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Fig. 13. Energy per site E divided by e&;, plotted versus e&;. Symbols indicate L=32 (+),
64 (_), 128 (g), 256 (h), 512 (m), 1024 (V), 1536 ( ). Error bars are invisibly small. The
uppermost points at each ; represent the infinite-volume limit. Note the nearly linear behavior
for small e&;, in good agreement with (4.9). Straight line is E=0.21777e&;+1.65303e&2;,
which is the least-squares fit to the data with L=1024 and ;�5.00.

employed to generate data at another temperature ;$ by reweighting with
the factor exp[&(2;) H], where 2;#;$&;. This reweighting is of course
always valid in principle; but one must be aware that the statistical error
bars on the reweighted data grow rapidly as |2;| grows, and the maximum
|2;| for which one can obtain a not-too-large error bar gets smaller for
larger L:

L&d�2 near a non-phase-transition point

|2; |�{L&1�& near a critical point (4.10)

L&d near a first-order phase-transition point

Our Monte Carlo data illustrate this point in a very striking way. In all of
our runs with L�128��totalling more than 60 million measurements��we
did not observe even a single configuration (after the discard interval) with
energy E=0. In other words, none of our histograms for L�128��even
those at our largest ; value, namely ;=6.0��have any overlap with the
zero-temperature probability distribution. It follows that reweighting to
zero temperature in these cases is nonsense. For L=64, our runs at ;=4.50
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and 5.00 (but not smaller ;) do show some configurations with E=0, but
the sample size of such configurations is very small: about 0.20 at ;=5.0.
Reweighting to zero temperature in these cases would thus produce enor-
mous error bars (at least if the error bars are computed correctly!). Only
for L�32 do we have a significant number of zero-energy configurations:
for example, for L=32 and ;=5.0, we found that 21.60 of the configura-
tions have E=0. Furthermore, even reweighting to nonzero temperatures
is fraught with severe dangers. For example, although our run lengths are
anywhere from 2_105 to 106 measurements, the energy histograms of a
pair of runs typically show no overlap if |2;|-0.3 (resp. 0.4, 0.5�0.6,
0.5�0.9, 1.2�1.4) for L=1536 (resp. 1024, 512, 256, 128).26 It follows that
reweighting beyond these limits is nonsense, and reweighting near these
limits leads to huge statistical errors.

5. DATA ANALYSIS: q=3, DYNAMIC QUANTITIES

In this section we analyze the dynamic critical behavior of the WSK
algorithm for the 3-state antiferromagnetic Potts model on the square
lattice.

5.1. Integrated Autocorrelation Times

Examination of Table 1 indicates that the autocorrelation times
{int, M

2
stagg

and {int, E are bounded uniformly in ; and L. (Indeed, their values
are very small: {int, M

2
stagg

<5 and {int, E<4.) We conclude that critical slow-
ing-down is completely eliminated.

We can study the dynamic critical behavior in more detail by applying
the standard dynamic finite-size-scaling Ansatz

{int, A(;, L)r!(;, L)z int, A gA(!(;, L)�L) (5.1)

to the observables A=M2
stagg and E. Here zint, A is a dynamic critical expo-

nent, gA is an unknown scaling function, and gA(0)=limx a 0 gA(x) is
supposed to be finite and nonzero.27 Usually we would determine zint, A by
plotting {int, A �!(L)z int, A versus !(L)�L and adjusting zint, A until the points
fall as closely as possible onto a single curve (with priority to the larger L

505Antiferromagnetic Potts Models on the Square Lattice

26 The allowable |2;| depends slightly on ;, getting smaller at smaller ;. For example, at
L=512 the ;=5.7 run shows no overlap with the ;=5.1 run, which in turn shows no over-
lap with the ;=4.65 run, which in turn shows no overlap with the ;=4.2 run.

27 We emphasize that the dynamic critical exponent zint, A is in general different from the expo-
nent zexp associated with the exponential autocorrelation time {exp .(43, 57, 58)
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Fig. 14. Dynamic finite-size-scaling plot of {int, M
2
stagg

versus !(L)�L, assuming dynamic criti-
cal exponent zint, M

2
stagg

=0 Symbols indicate L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m),

1024 (V), 1536 ( ). Error bars are one standard deviation.

values). But in our case the situation is much simpler: the dynamic critical
exponents zint, M

2
stagg

and zint, E are zero.
In Fig. 14 we show the dynamic finite-size-scaling plot for {int, M

2
stagg

,
assuming zint, M

2
stagg

=0. The data collapse is amazingly good, especially for
a plot with no free parameters. Indeed, in all our Monte Carlo work on
dynamic critical phenomena we have never observed a data collapse this
good, even when we had the freedom to adjust zint, A .

For {int, E , by contrast, the data collapse is not so good: see Fig. 15,
where we again assume zint, E=0. Clearly there are huge corrections to
dynamic finite-size-scaling for this observable. Even so, the points do
appear to be converging as L � � to a limiting curve (which can be
roughly traced using the L=512 and L=1024 points).

5.2. Autocorrelation Functions

Now we want to test the more detailed dynamic finite-size-scaling
Ansatz

\AA(t; ;, L)r |t|&pA hA(t�{exp, A(;, L); !(;, L)�L) (5.2)

506 Ferreira and Sokal



File: 822J 237047 . By:XX . Date:20:09:99 . Time:12:41 LOP8M. V8.B. Page 01:01
Codes: 2232 Signs: 1080 . Length: 44 pic 2 pts, 186 mm

Fig. 15. Dynamic finite-size-scaling plot of {int, E versus !(L)�L, assuming dynamic critical
exponent zint, E=0. Symbols indicate L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m), 1024
(V), 1536 ( ). Error bars are one standard deviation.

where pA is an unknown exponent and hA is an unknown scaling function.
If pA=0, then (5.2) can equivalently be written as

\AA(t; ;, L)rh� A(t�{int, A(;, L); !(;, L)�L) (5.3)

In this latter situation,28 {int, A and {exp, A have the same dynamic critical
exponent zint, A=zexp , and we furthermore have

{int, A

{exp, A
rFA(!(;, L)�L) (5.4)

where

FA(x)# lim
t � +�

1
t

log h� A(t; x) (5.5)

Let us now test the Ansatz (5.3) for the observable A=M2
stagg . (We

restrict attention to this observable, since we already know that for A=E

the dynamic finite-size-scaling behavior is poor.) In Fig. 16 we plot
\M

2
staggM

2
stagg

(t) versus t�{int, M
2
stagg

, using all the data points. The points fall
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28 Contrary to much belief, zint, A need not equal zexp . Indeed, if \A>0, we have zint, A=
(1& pA) zexp<zexp . See refs. 43 and 58 for further discussion.
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Fig. 16. Plot of \M
2
staggM

2
stagg

(t) versus t�{ int, M
2
stagg

, using all data points. Symbols indicate

L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m), 1024 (V), 1536 ( ). Error bars are omitted.

roughly on a single curve before falling into the statistical noise (which we
expect to be of order (n�{int, M

2
stagg

)&1�2 where n is the run length, hence of
order \0.005). However, even at small t�{ int, M

2
stagg

there are clear devia-
tions from a single curve, indicating that the scaling function h� M

2
stagg

depends in a nontrivial way on its second argument !(L)�L. Therefore, in
Fig. 17a�f we show the same plot with the data subdivided into ``slices'' of
!(L)�L; the slices are chosen empirically so that the data points within a
slice fall reasonably well onto a single curve modulo statistical noise. On
each plot we also draw, for reference, a line corresponding to a pure
exponential decay {int, M

2
stagg

={exp, M
2
stagg

. The data support the Ansatz (5.3)
reasonably well, with each range of !(L)�L defining roughly a single curve
(until that curve falls into the statistical noise). The curves for small !(L)�L
are close to straight (i.e., close to a pure exponential), while the curves for
larger !(L)�L are increasingly convex.29 (Note that the rescaled horizontal
axis ensures that the total area under each curve is 1. Therefore, the more
convex curves must be below the straight curve for small {int, M

2
stagg

but
above it for large {int, M

2
stagg

.) This means that the ratio {int, M
2
stagg

�{exp, M
2
stagg

508 Ferreira and Sokal

29 It is amusing to note that a similar behavior was observed in our study of the multi-grid
Monte Carlo algorithm for the two-dimensional O(3) _-model.(59) We wonder whether it is
a general phenomenon.
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Fig. 17. Plot of \M
2
staggM

2
stagg

(t) versus t�{int, M
2
stagg

subdivided by ranges of !(L)�L: (a) 0.0�0.1,

(b) 0.1�0.2, (c) 0.2�0.5, (d) 0.50�0.54, (e) 0.54�0.58, (f ) 0.58�0.63. Symbols indicate L=32
(+), 64 (_), 128 (g), 256 (h), 512 (m), 1024 (V), 1536 ( ). Error bars are omitted. The
straight lines correspond to a pure exponential decay {int, M

2
stagg

={exp, M
2
stagg

.
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Fig. 17. (Continued )
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Fig. 17. (Continued )
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Fig. 18. Relative variance-time product [including errors of types (i)+(ii)+(iii)] divided
by !�(;)2, plotted versus !�(;)�L, for two-dimensional three-state Potts antiferromagnet.
(a) is for O=!, (b) is for O=/stagg . Symbols indicate L=128 (g), 256 (h), 512 (m),
1024 (V), 1536 ( ).
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is close to 1 for small !(L)�L, and less than 1 for larger !(L)�L. It is con-
ceivable that {int, M

2
stagg

�{exp, M
2
stagg

tends to 1 as !(L)�L � 0; if true, this would
mean that M2

stagg truly becomes the ``slowest mode'' in the limit
L � �, !�L � 0.

5.3. Relative Variance-Time Product

Finally, let us look at the scaling (2.26) of the relative variance-time
product. For each observable O=!, /stagg we proceed as follows: For each
run (;, L) we form the relative variance (2O� �O�)2 on the extrapolated
infinite-volume value coming from that run; we then multiply by L2_
(*iterations&*discard), which is a normalized measure of the CPU time
invested in that run (after the discard interval); the result is, by definition,
RVTP(;, L). We then divide RVTP(;, L) by !�(;)2 [since d=2 and
zint, O=0] and plot it versus !�(;)�L.30 The results are reported in Fig. 18a
for ! and Fig. 18b for /stagg . The scaling is reasonably good, though not
perfect; this is not surprising, since our computed RVTP includes errors of
types (i)+(ii)+(iii) while the scaling formula (2.26) refers only to errors
of types (i)+(ii).31, 32 Indeed, the fact that we see even modestly good
scaling indicates that the errors of type (iii) are not dominant.

We see that for ! the optimal value of !� �L is r1, but the minimum
is very flat: any value in the range 0.5�!� �L�10 is almost equally good.
It is only for !� �L�0.3 that the RVTP rises sharply, by a factor of 10 or
more. In other words, the only region in which one should not run is the
region in which one traditionally always ran, namely !� �L�1�6. For /stagg

the story is similar, but the minimum is somewhat sharper: the optimum
is at !� �Lr0.4, and the RVTP rises by about a factor of 3 (resp. 10) as
!� �L increases to r10 (resp. decreases to r0.1).

6. DATA ANALYSIS: q=4

For q=4 the story is very brief: simulations on L=32, 64 agree within
statistical error and show that !�2 uniformly as ; � � (Table 2). Clearly
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based on averaging all the runs at the given ;.

31 The much cleaner graph shown in [20, Fig. 2] was computed by using the theoretical
formulae for the propagation of errors under extrapolation, (21, 22) and includes only errors
of types (i)+(ii).

32 The anomalous L=1536 point at !� �Lr16.6 corresponds to ;=6.0, where our statistics
are poor and the extrapolation has almost broken down. Its relative error (330 for ! and
710 for /stagg) is so large that both the extrapolated value and its error estimate are
unreliable.



there is no critical point in the physical region. Physically, there is so much
entropy that the correlations decay exponentially even at zero temperature.
This can be proven rigorously to occur on the square lattice for q�7, (9) and
our simulations confirm Baxter's(23) prediction that it occurs in fact for q>3.

The autocorrelation times {int, M
2
stagg

and {int, E of the WSK algorithm
are bounded uniformly in ; and L, and indeed are almost constant:
{int, M

2
stagg

r2.6 and {int, Er3.5.

7. DISCUSSION AND CONCLUSIONS

In this section we summarize our conclusions and discuss their theo-
retical implications. We conclude by mentioning a few possible directions
for future work.

7.1. Behavior of the Correlation Length

The numerical data presented in this paper (Section 4.2.1) show
clearly that the correlation length diverges as ; � � approximately like
!(;)te2;. Since the fundamental variable in the Potts model is
t=eJ=e&;, an ordinary power-law critical point !t(t&tc)&& with tc=0
would correspond to !(;)te&;. Therefore, our result can be interpreted as
indicating a power-law critical point at zero temperature with critical expo-
nent &=2. The fact that & is here a rational number reinforces our
suspicion that this two-dimensional model can be solved exactly, at least in
the sense of determining the exact asymptotic behavior as ; � �. The
exponent &=2 corresponds to an operator with scaling dimension
X=2&1�&=3�2, which is one of the possibilities proposed by Saleur [36,
p. 248]��albeit not the one he considered most likely!

On closer examination, however, the ratio !(;)�e2; appears not to be
asymptotically constant as ; � � (see Fig. 5a); rather, it begins to rise
when ;r3.4 (!r75), and this rise shows no sign of abating at least up to
;r5.9 (!r15000). Indeed, our data are compatible with an asymptotic
behavior

!(;)=Ae2;; p[1+a1e&;+a2e&2;+ } } } ] (7.1)

with pr1 (see Fig. 6). This corresponds to a power-law critical point with
multiplicative logarithmic correction ; p

t |log(t&tc)| p. The problem is to
make theoretical sense of such a behavior.

In the preliminary report of this work, (13) we asserted that a multi-
plicative logarithmic correction ; p

t(log t) p with p integer (particularly
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p=1) can occur in the renormalization-group framework as a result of
``resonance'' between operators whose scaling dimensions are rationally
related. This assertion is (we now realize) only half-true. For the suscep-
tibility, specific heat, and similar observables, it is indeed true that multi-
plicative logarithmic corrections with positive integer powers p can occur
as a result of resonance.(60�62) However, we have been unable to devise any
renormalization-group scenario in which the correlation length acquires
such a multiplicative logarithmic correction in the absence of marginal
operators. For example:

(1) Suppose that we hypothesize a scenario with one relevant
variable t (eigenvalue *>0) and one irrelevant variable u (eigenvalue &*),
satisfying the RG flow equations

dt
dl

=*t+t2u (7.2a)

du
dl

=&*u (7.2b)

where t(0) and u(0) are the couplings in the Hamiltonian, and t(l ) and u(l )
are the renormalized couplings after modes of momentum -e&l have been
integrated out. The solution is

t(l )=e*l \ 1
t(0)

&Al+
&1

(7.3a)

u(l )=Ae&*l (7.3b)

where A=u(0). Let us now choose l so that t(l )=1; this implies that
el=!�!1 , where !1 is the correlation length at t=1 and u=Ae&*l

r0.
Hence

!
!1

=_ 1
t(0)

&A log(!�!1)&
1�*

=t&1�*[1+O(t log t)] (7.4)

so that the presence of the irrelevant operator u (i.e., A{0) induces only
an additive correction to scaling O(t log t).

(2) Suppose, alternatively, that we hypothesize two relevant
operators t, u with eigenvalues n* and *, respectively, where n is an integer
�1 and *>0, satisfying the RG flow equations

515Antiferromagnetic Potts Models on the Square Lattice



dt
dl

=n*t+un (7.5a)

du
dl

=*u (7.5b)

The solution is

t(l )=[t(0)+u(0)n l ] en*l (7.6a)

u(l )=u(0) e*l (7.6b)

Since there are two relevant operators, generically two couplings have to be
adjusted in order to place the system at a critical point. But if some sym-
metry were to cause t(0) to be exactly zero [or at least �u(0)n], then a
critical point can be reached by adjusting u(0) alone. So assume this, and
let us analyze the resulting critical behavior. Let us choose l so that
t(l )=1; this implies that el=!�!1 , where !1 is the correlation length at
t=1 and u=l &1�n

r0. Hence

\ !
!1 +

n *

log \ !
!1+=u(0)&n (7.7)

so that

!
!1

=u&1�* |log u|&1�n* _1+O \log log u
log u + & (7.8)

(One expects a further correction-to-scaling term O( |log u|&1�n) arising
from the fact that u(l )=l &1�n{0.) Hence there is a multiplicative loga-
rithmic correction, but its power is negative; and there are very-slowly-
decaying (logarithmic) additive corrections to scaling.

(3) In the presence of a marginally irrelevant operator u, multi-
plicative logarithmic corrections of either sign can be obtained.33 Suppose,
for example, that the flow equations are

dt
dl

=#(u) t (7.9a)

du
dl

=&;(u) (7.9b)
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strong dipolar interactions, (66, 67) and the two-dimensional 4-state Potts ferromagnet. (68�70)



Then the solution is given by the implicit equation

l=|
u(0)

u(l )

du$
;(u$)

(7.10)

together with

t(l )=t(0) exp \|
u(0)

u(l )

#(u$)
;(u$)

du$+ (7.11)

If we now assume that

#(u)=*+#1u+#2u2+#3 u3+ } } } (7.12a)

;(u)= ;2 u2+;3u3+ } } } (7.12b)

with *>0 and ;2>0, and assume further that u(0)>0 is small enough so
that ;(u)>0 for 0<u<u(0), we then find that

t(l )=const_t(0) e*ll #1 �;2 _1+
;3 #1

;2
2

log l
l

+O \1
l+ & (7.13a)

u(l )=
1

;2 l _1&
;3

;2
2

log l
l

+O \1
l + & (7.13b)

Setting now t(l )=1 and el=!�!1 as before, we obtain

!
!1

=t&1�* |log t| &#1 �;2* _1+
;3#1

;3
2 *

log | log t|
|log t|

+O \ 1
|log t|+& (7.14)

The exponent of the multiplicative logarithmic correction, &#1 �;2 *, can
thus be of either sign. Note, however, the presence of very-slowly-decaying
additive corrections to scaling of the form O(log log t�log t) [with a univer-
sal coefficient] and O(1�log t) [with a nonuniversal coefficient].

Thus, we have been unable to devise any renormalization-group
scenario in which the correlation length acquires a multiplicative
logarithmic correction with exponent p>0 in the absence of marginal
operators; and we suspect that no such scenario exists. On the other hand,
if marginal operators were present in our model (as in scenario *3), then
one of their effects would be to induce 1�log L corrections to scaling in the
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finite-size scaling functions,34 and we see no evidence of corrections decay-
ing anywhere near so slowly. On the contrary, the corrections to scaling
are here almost undetectable, and they appear to decay like L&2 with 2-1
(see Section 4.1.1).

Finally, an anonymous referee has pointed out to us the possibility
that the important microscopic variable is not t=e&; but rather t=1�;,
and that this t is a marginally relevant operator:

dt
dl

=B(t)=b2 t2+b3 t3+b4 t4+ } } } (7.15)

with b2>0, i.e., a situation of asymptotic freedom. (This sounds
implausible at first sight for a discrete-spin model, but is not impossible.)
The solution to (7.15) is given by

l=|
t(l )

t(0)

dt$
B(t$)

(7.16)

If we set t(l )=1 and t(0)=1�; and use el=!�!1 as before, we obtain

!=Ae ;�b2 ;&b3 �b 2
2 _1+O \1

;+& (7.17)

where A is a nonperturbative constant, and the corrections in inverse
powers of ; can be computed from the coefficients b4 , b5 ,... . On the other
hand, the corrections to finite-size scaling are determined (as usual) by
irrelevant operators, and so decay as inverse powers of L (provided there
are no marginally irrelevant operators). So this scenario, unlike scenario
*3, is not ruled out by our finite-size-scaling data (Section 4.1.1).
However, if (7.17) is indeed the true behavior, then our data are so far
from asymptotic that they give no useful information about A and
p#&b3 �b2

2 (see Section 4.2.1 and in particular Fig. 8). So we cannot rule
out this scenario, but neither can we obtain any evidence in its favor.

In summary, we really do not understand the theoretical basis for an
asymptotic behavior of the form (7.1) with p>0.

An alternative possibility is that the true asymptotic behavior is
!(;)te2; without multiplicative logarithmic corrections. This could hap-
pen in either of two ways:
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size-scaling functions when a marginally irrelevant operator is present; and see [70, Fig. 6]
for an illustration of their practical effect in the two-dimensional 4-state Potts ferromagnet.
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Fig. 19. Traditional finite-size-scaling plot of !(L)�e2; versus !(L)�L, using all data points
with !(L)�20. Symbols indicate L=32 (+), 64 (_), 128 (g), 256 (h), 512 (m), 1024 (V),
1536 ( ). Error bars (one standard deviation) are in almost all cases smaller than the symbol
size.

(a) The rise seen in Fig. 5a at ;-3.4 might be spurious, i.e., an
artifact of some undetected systematic error in our extrapolation method.
Indeed, it is suspicious that this rise begins at roughly the same correlation
length (!r75) where our extrapolation method begins to play a central
role.35 To test whether this rise is real, we produced a traditional finite-size-
scaling plot in which !�e2; is plotted versus !�L (Fig. 19). One sees clearly
that the points do not fall on a single curve, and that it is the largest
lattices that deviate the most from the others (see particularly the range
0.25�!�L�0.4); the data are most definitely not compatible with con-
vergence to a limiting FSS curve. Rather, the deviations reflect precisely the
rise of !�e2; when !-100. We therefore think that the rise observed in
Fig. 5a is real.

(b) The rise seen in Fig. 5a might level off at some ;>6. This is
perfectly possible, but it would mean that the corrections to the leading
asymptotic behavior either have unusually strong amplitude or else decay
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of Table 1 shows that we have raw data satisfying !�L<1�6 up to ;=3.50 (!r94), but not
beyond that.



more slowly than the hypothesized e&;. If the corrections behave as in
(7.1), the coefficient a1 would have to be approximately &15 in order to
obtain a decent fit between ;=4.5 (e&;

r0.011) and ;=6.0 (e&;
r0.002),

and the coefficients a2 and a3 would have to be large as well (see Fig. 7a).
On the other hand, if we allow additive corrections to scaling that are
fractional powers of e&;,

!(;)=Ae2;[1+a1e&*1 ;+a2e&*2 ;+ } } } ] (7.18)

then the data for ;�4.5 can be fit reasonably well with *1r0.5 and
a1r &2.4 (see Fig. 7b). Now such nonanalytic corrections to scaling can
arise routinely from irrelevant operators: in the case at hand, an additive
correction e&*1 ;

t!&*1�2 corresponds to a correction-to-scaling exponent
2=*1�2r1�4. Unfortunately, our study of the finite-size-scaling function
(Section 4.1.1) gives no indication of any correction to scaling with 2�1.
So it is highly unlikely that a correction e&*1 ; with *1r0.5 could arise
from this mechanism. We do not know whether some other mechanism
might lead to such behavior.

In conclusion, two distinct Ansa� tze on the large-; asymptotic behavior
of the correlation length��(7.1) with pr1, and (7.18) with *1r0.5��are
compatible with our data, but both present difficulties of theoretical inter-
pretation. We hope that someone will be able to sort this out, and that the
numerical results presented here will serve as useful clues toward the exact
solution of this model, possibly with the help of the methods of conformal
field theory.(5, 6) Our estimate of the universal quantity x*r0.633888 (see
also ref. 34) provides another constraint in determining the universality
class of this model.

7.2. Prospects for Future Work

Here are some possible directions for future work on the 3-state
square-lattice Potts antiferromagnet:

(1) Study small lattices (e.g., L=4, 8, 16, 32, 64) with very high
statistics in order to obtain quantitative information on the corrections to
scaling. Salas and Sokal(34) have recently done this at ;=� (correspond-
ing to !(L)�L=!*r0.634), but the corrections to scaling at this value of
!(L)�L are quite weak. As can be seen in Figs. 2(b) and 3(b), the correc-
tions are much stronger in the interval 0.54�!((L)�L�0.62, so it would be
useful to get higher statistics in this region.

520 Ferreira and Sokal



(2) Study large lattices (e.g., L=1024, 1536, 2048) at !�L<1�6
(where the finite-size effects are negligible, see Fig. 1) in order to verify that
the observed rise of !(;)�e2; at ;-3.4 (!-75) is real and not merely an
artifact of our extrapolation method. Using L=2048, we could hope to
reach ;r4.1 (!r320) with ``essentially infinite-volume'' simulations. By
this time the rise of !(;)�e2; is about 40 (see Fig. 5a) and so should be
clearly detectable.

Future studies of this model should also correct two defects in the
present work:

(3) We measured here the susceptibility and correlation length asso-
ciated to the staggered magnetization Mstagg , which is the most relevant
operator in this model ('stagg=1�3) and hence has the most strongly
divergent susceptibility (#stagg �&=2&'stagg=5�3). What we failed to notice
(until the runs had already been made and it was therefore too late!) is that
the uniform magnetization Mu is also a relevant operator ('u=4�3) (30, 33, 34)

with a divergent susceptibility (#u �&=2�3). Future studies should measure
it as well. Finally, the staggered polarization Pstagg (see refs. 33 and 34 for
the definition) is also a relevant operator ('Pstagg

=3) albeit with a non-
divergent susceptibility (#Pstagg

�&=&1). By measuring its correlation func-
tion at several different low momenta, it ought to be possible to check the
prediction 'Pstagg

=3 despite the non-divergence of the corresponding
susceptibility.

(4) In the present paper we didn't bother to measure the cross-corre-
lations between M2

stagg and Fstagg ; as a result, we were unable to assign
statistically valid error bars to ! (instead we used the triangle inequality to
obtain an overly conservative error bar). This was a serious mistake, as it
prevented us from distinguishing clearly between statistical fluctuations and
systematic errors (arising from corrections to scaling or other sources): see
Section 4.1.1. Measuring the cross-correlations would allow one to deter-
mine the correct error bars not only on ! but also on combinations such
as /�!5�3; this could lead to a very sensitive test of the conjecture that
/�!5�3 � const as ; � � (Section 4.2.2).

APPENDIX A. PROOF OF A CORRELATION INEQUALITY FOR
ANTIFERROMAGNETIC POTTS MODELS ON
A BIPARTITE GRAPH

Let V be a finite set of sites; we shall consider a q-state Potts model on
V consisting of spins _i # [1,..., q] for i # V, interacting via a Hamiltonian

H=& :
(ij)

Jij $_i, _j (A.1)
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Here the sum runs over all pairs i, j # V (each pair counted once), and
[Jij ] i, j # V is some specified set of couplings.

In this appendix we shall prove some correlation inequalities for the
Potts model (A.1). Our technique will be to embed a field of Ising spins
into the given Potts model��using, in fact, precisely the Wang�Swendsen�
Kotecky� (WSK) embedding discussed in Section 2.3��and to exploit the
well-known Griffiths inequalities(71, 72) for the induced Ising model. It is
amusing that the WSK embedding can be used both as a Monte Carlo
algorithm and as an analytical technique. Similar proofs of correlation
inequalities based on the embedding of Ising or XY variables can be found
in refs. 73�77.

We begin by introducing a redundant (but perfectly legitimate)
parametrization of the q-state Potts spin _i in terms of a q-state Potts spin
|i and an Ising spin {i . Let |i be uniformly distributed in [1,..., q], and let
{i be uniformly distributed in [&1, +1]; we then define

_i={
3+{i

2
if |i=1 or 2

(A.2)

|i if |i�3

It is easy to see that _i is uniformly distributed in [1,..., q]: indeed, each of
the q possible values of _i arises from exactly two of the 2q possible values
of (|i , {i ). Performing this construction independently at each site i # V, we
construct the a priori measure for the spins [|i , {i ]i # V , and thus also for
the spins _i defined by (A.2) as functions of (|i , {i ). The desired probabil-
ity distribution is then obtained by multiplying this a priori measure by
Z&1 exp[&H([_])], where H is given by (A.1) and [_] is defined by (A.2).

Let us first compute the probability distribution of the set of spins [{]
conditioned on the set of spins [_]. Here the Boltzmann weight factor
Z&1 exp[&H([_])] plays no role, since the [_] are being held fixed; the
conditional distribution is the same as in the a priori measure. We thus
have, independently for each site i,

{i={2_ i&3
\1 with equal probability

if _ i=1 or 2
if _ i�3

(A.3)

It follows that the conditional expectation of {i{j given [_] is

E({i {j | [_])=I(_i�2) I(_j�2)(2$_i , _j
&1) (A.4a)

+1 if _i=_j=1 or _i=_j=2

={&1 if _i=1, _j=2 or _i=2, _j=1 (A.4b)

0 in all other cases
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where I( } } } ) denotes the indicator function of the specified event. Next we
want to take the unconditional expectation of (A.4). Since the probability
distribution of the [_] is invariant under global permutations of [1,..., q],
we have in particular that the joint probability distribution of _i and _j is
given by

Prob(_i , _ j )=
p
q

$_i , _j
+

1& p
q(q&1)

(1&$_i , _j
) (A.5)

where p=($_i , _j
). Averaging (A.4) over the distribution (A.5), we find

that

({i{j )=
2( pq&1)
q(q&1)

=
2
q �

q$_i , _j
&1

q&1 � (A.6)

Note that on the right-hand side of this identity we have precisely the two-
point correlation function of our Potts model [cf. (2.3)], multiplied by 2�q.

On the other hand let us compute the probability distribution of the
set of spins [{] conditioned on the set of spins [|]. Note first that

$_i , _j
=I(| i�3) I(|j�3) $|i , |j

+I(|i�2) I(|j�2)
1+{ i{ j

2
(A.7)

Inserting this into (A.1), we see that the model of spins [{] conditioned on
[|] is an Ising model with interactions

J eff
ij # 1

2 Jij I(| i�2) I(|j�2) (A.8)

(The factor 1
2 comes simply from the difference between the conventional

Ising and Potts normalizations of couplings.) Below, we shall apply various
correlation inequalities to this induced Ising model.

Let us consider some special cases:

Example 1 (ferromagnetic Potts model). Assume that Jij�0 for all
i, j # V. Then the couplings J eff

ij are also �0. So Griffiths' first inequality(71)

applied to the induced Ising model (A.8) implies that

E({i {j | [|])�0 for all [|] (A.9)
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In particular, averaging this over [|] we deduce that ({i {j) �0; and
hence by the identity (A.6) we have

�
q$_i , _j

&1

q&1 ��0 (A.10)

This is a ``Griffiths' first inequality for ferromagnetic Potts models.''
Of course, this inequality can be proven somewhat more simply using

the Fortuin�Kasteleyn representation: the left-hand side of (A.10) is equal
to a connection probability in the Fortuin�Kasteleyn bond variables, and
thus is manifestly nonnegative. Indeed, this proof is valid for all real q�0.
So nothing much is gained by WSK embedding in this case; the real value
of the method arises in the next case:

Example 2 (antiferromagnetic Potts model on a bipartite graph).
Assume that the set of sites V can be partitioned as V=A _ B in such a
way that

�0 if i, j # A
Jij {�0 if i, j # B (A.11)

�0 if i # A, j # B

(In particular, the pure antiferromagnet would have Jij=0 for i, j # A and
for i, j # B.) Now define

{$i={{i

&{i

if i # A
if i # B

(A.12)

It follows that the model of spins [{$] conditioned on [|] is an Ising
model with interactions

+1 if i, j # A
J$ij

eff# 1
2Jij I(|i�2) I(| j�2)_{+1 if i, j # B =�0 (A.13)

&1 if i # A, j # B

So Griffiths' first inequality(71) applied to this ferromagnetic Ising
model implies that

E({$i {$j | [|])�0 for all [|] (A.14)
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Averaging over [|] we deduce that ({$i {$j) �0, and hence by the identity
(A.6) that

�0 if i, j # A

�
q$_i , _j

&1

q&1 �=
q
2

({i {j ) {�0 if i, j # B (A.15)

�0 if i # A, j # B

This is a kind of ``Griffiths' first inequality for antiferromagnetic Potts
models.''

In particular, for antiferromagnetic Potts models on the square lattice,
(A.15) implies that the two-point correlation function G(x, y) has
sign(&1) |x& y|, where |x& y| denotes the l1 norm. One consequence of this
is that the Fourier-transformed two-point function G� ( p) satisfies

|G� ( p)|�G� ((?, ?)) (A.16)

Example 3 (comparison-to-Ising inequality). Let us return to the
general case of arbitrary [Jij ]. From (A.8) it follows immediately that

|J eff
ij |� 1

2 |J ij | (A.17)

so by Griffiths' comparison inequality(72) we have

|E({i {j | [|])|�(=i =j ) Ising, [ |J�2|] for all [|] (A.18)

where ( } } } ) Ising, [ |J�2|] denotes the expectation in an Ising model with
couplings [ 1

2|J ij |]. Averaging over [|] and using (A.6), we conclude that

�
q$_i , _j

&1

q&1 ��
q
2

(=i =j ) Ising, [ |J�2|] (A.19)

Thus, the two-point function in an arbitrary Potts model can be bounded
above by the corresponding two-point function in a ferromagnetic Ising
model.36
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36 Of course, for a ferromagnetic Potts model a much stronger result is true, namely that each
correlation function G(x, y; q) is a decreasing function of q (for q�1) at fixed [Jij ]. This
follows from the Fortuin�Kasteleyn representation combined with the FKG inequality for
the random-cluster model.(78, 79) So the real interest of (A.19) is for the antiferromagnetic or
mixed ferromagnetic�antiferromagnetic Potts models.



For example, one consequence of (A.19) is that the transition tempera-
ture of the q=3 Potts antiferromagnet on the triangular lattice must satisfy

;trans(TRI q=3 Potts AF)

�2;crit(TRI Ising ferro)= 1
2 log 3=0.549306... (A.20)

This bound is of course satisfied by the numerical estimate ;trans (TRI q=3
Potts AF)r1.594.(80) Likewise, for the q=3, 4 Potts antiferromagnets on
the simple-cubic lattice, one must have

;trans(SC q=3, 4 Potts AF)�2;crit(SC Ising ferro) (A.21)

which is satisfied by the numerical estimates ;trans(SC q=3 Potts AF)r

0.816, (11, 81�84) ;trans(SC q=4 Potts AF)r1.43, (85) and ;crit(SC Ising ferro)
r0.222.(86)

APPENDIX B. PROOF OF ERGODICITY OF THE WSK
ALGORITHM AT T=0 ON A BIPARTITE GRAPH

Let G=(V, E ) be a finite undirected graph with vertex set V and edge
set E. Then G is said to he bipartite if the vertex set V can be partitioned
as V=A _ B in such a way that every edge e # E has one endpoint in A
and the other endpoint in B (i.e., there are no A�A or B�B edges).

Example 1. Any finite subset of the simple (hyper-)cubic lattice Zd,
with free boundary conditions, defines a bipartite graph.

Example 2. A box of size L1_L2_ } } } _Ld in Zd, with periodic
boundary conditions, defines a bipartite graph if and only if all the side
lengths L1 , L2 ,..., Ld are even.

The goal of this Appendix is to prove the following theorem:

Theorem B.1 Let G be a bipartite finite undirected graph, and let
q be an integer �2. Then the Wang�Swendsen�Kotecky� algorithm for the
q-state Potts antiferromagnet on G at zero temperature (i.e., for q-colorings
of G) is ergodic.

Proof. We will prove, by induction on q, that the WSK algorithm for
q-colorings (hereafter called WSK-q) is ergodic on G and on all its sub-
graphs.
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Case q=2. Since G is bipartite, so are all its subgraphs H. The WSK
algorithm acts independently on each connected component of H, so it suf-
fices to prove the ergodicity for each connected component. But a con-
nected bipartite graph has precisely two 2-colorings, which are related by
a global interchange of the two colors; and this global interchange can tri-
vially be realized by a WSK move.

Inductive step. Let q�3, and suppose that WSK-(q&1) is ergodic on
G and all its subgraphs; we shall prove the same for WSK-q. So let
H=(V $, E$) be a subgraph of G, and define A$=A & V $, B$=B & V $.
Define the reference configuration to be the q-coloring of H in which all
sites in A$ are colored 1 and all sites in B$ are colored 2. Let [_x]x # V $ be
an arbitrary q-coloring of H, which we call the target configuration. We
shall show that the reference configuration can be transformed into the
target configuration by a finite sequence of WSK-q moves. (This is suf-
ficient to prove ergodicity, since the inverse of a WSK move is also a WSK
move.)

(a) Step 1. Choose 1, q as the pair of colors to be used in the WSK
move, and focus attention on all sites x # A$ such that the target configura-
tion has _x=q. All these sites are of course currently colored 1, and all
their neighbors (which are in B$) are currently colored 2. So each of these
sites is a singleton (i.e., a one-site connected component) in the subgraph
of H formed by those sites currently colored 1 or q. Therefore, each of these
sites can be recolored q by a WSK move, while leaving all other sites
unchanged.

(b) Step 2. Choose 2, q as the pair of colors to be used in the WSK
move, and focus attention on all sites x # B$ such that the target configura-
tion has _x=q. All these sites are of course currently colored 2; and all
their neighbors (which are in A$ and have target color{q) are currently
colored 1. So each of these sites is a singleton in the subgraph of H formed
by those sites currently colored 2 or q. Therefore, each of these sites can be
recolored q by a WSK move, while leaving all other sites unchanged.

(c) Step 3. All sites with target color q are now colored q, while
the remaining sites are now colored 1 or 2. The latter sites (along with their
corresponding edges) define a subgraph K/H; and by the inductive
hypothesis they can be given their target colors (which lie in [1, 2,...,
q&1]) by a sequence of WSK-(q&1) moves (which are of course also
WSK-q moves). K

Note. After completion of this work, we learned that the same
theorem (as well as some generalizations of it) was obtained independently
by Burton and Henley.(33) Their proof is essentially the same as ours.
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